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Abstract. For a split reductive groupG we realise identities in the Grothendieck
group of Ĝ-representations in terms of cycle relations between certain closed

subschemes inside the affine grassmannian. These closed subschemes are ob-

tained as a degeneration of e-fold products of flag varieties and, under a bound
on the Hodge type, we relate the geometry of these degenerations to that of

moduli spaces of G-valued crystalline representations of Gal(K/K) for K/Qp

a finite extension with ramification degree e. By transferring the aforemen-
tioned cycle relations to these moduli spaces we deduce one direction of the

Breuil–Mézard conjecture for G-valued crystalline representations with small

Hodge type.
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1. Introduction

The goal of this paper is to prove new results towards the Breuil–Mézard conjec-
ture for crystalline representations valued in a connected split reductive group G.
This open conjecture is a combinatorial shadow of the expected p-adic Langlands
correspondence and describes multiplicities of irreducible components inside mod-
uli spaces of p-adic Galois representations. We refer to the introduction of [Bar21]
or [EG23, §1.7] for more details, at least when G = GLn. To achieve our goal we
describe new structures in the affine grassmannian which exhibit Breuil–Mézard
phenomena, and relate these to moduli of Galois representations. When G = GL2

these results were proven in [Bar21], and what we do here extends these techniques
to general G.

There are two main theorems we prove. The first is purely algebro-geometric and
describes an analogue of the Breuil–Mézard conjecture for certain closed subschemes
inside the affine grassmannian. For this we fix a split reductive group G, together
with a choice of maximal torus and Borel T ⊂ B and write Ĝ for the dual group.
We let GrG,F denote the associated affine grassmannian over a field F and, for an
integer e ≥ 1 and any e-tuple of dominant cocharacters µ = (µ1, . . . , µe) of G, we
define closed subschemes Mµ,F ⊂ GrG,F as degenerations of an e-fold product of
flag varieties G/Pµ1 × . . . ×G/Pµe (see the first bullet point after Theorem 1.1 for
more details). We then show that the geometry of these Mµ,F as µ varies can be
described in terms of the representation theory of e-fold tensor products of the
Ĝ-representations W (µi) (for any dominant cocharacter λ of G we write W (λ) for

the associated Weyl module, viewed as an algebraic representation of Ĝ). More
precisely, we prove:

Theorem 1.1. Assume G admits a twisting element ρ, i.e. a cocharacter pairing
to 1 with all simple roots of G. Then, for any tuple µ = (µ1, . . . , µe) of strictly
dominant cocharacters of G (i.e. µi − ρ is dominant) satisfying

e

∑
i=1

⟨α∨, µi⟩ ≤ charF + e − 1

for all roots α∨ of G (when charF = 0 this condition is not needed) one has identities
of edimG/B-dimensional cycles

[Mµ,F] = ∑
λ

mλ[M(λ+ρ,ρ,...,ρ),F]

where mλ denotes the multiplicity of W (λ) inside ⊗e
i=1W (µi − ρ). Furthermore,

each M(λ+ρ,ρ,...,ρ),F appearing in this sum is irreducible and generically reduced.

A twisting element ρ need not always exist (e.g. if G = SL2) but will whenever

Ĝ is semi-simple and simply connected, or has simply connected derived subgroup
(e.g. if G = GLn). Twisting elements can also always be found after replacing

Ĝ by a Gm-extension [BG14, §5]. When G = GLn the cocharacters µi identify
with n-tuples (µi,1, . . . , µi,n) of integers via µi(t) = diag(tµi,1 , . . . , tµi,n). Under this
identification we can take ρ = (n−1, n−2, . . . ,1,0). Then µi being strictly dominant
is equivalent to asking that xi − xi+1 ≥ 1 for each i and the bounds in Theorem 1.1
are equivalent to asking that

e

∑
i=1

(µi,1 − µi,n) ≤ charF + e − 1
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The following three points identify the crucial inputs into the proof of Theorem 1.1:

● In order to construct the degenerations Mµ,F we choose a discrete valuation
ring O with residue field F and an e-tuple of pairwise distinct π1, . . . , πe
in the maximal ideal of O. Viewing G as a group over SpecO we use
π1, . . . , πe to extend GrG,F to and ind-O-scheme GrG (as a specialisation of
the Beilinson–Drinfeld grassmannian over AeZ) with generic fibre an e-fold
product of GrG,FracO’s. Any tuple µ = (µ1, . . . , µe) then determines a closed
immersion

G/Pµ1 × . . . ×G/Pµe ↪ GrG⊗O FracO

for Pµi the associated parabolic subgroup. We set Mµ equal the closure of
this embedding inside GrG and Mµ,F the fibre over SpecF.

● Next we establish cycle identities

(1.2) [M(µ1+ρ,...,µe+ρ) ⊗O F] = ∑
λ

nλ[M(λ+ρ,ρ,...,ρ) ⊗O F]

for nλ ∈ Z≥0, a priori, with no representation theoretic interpretation. This
is essentially a topological calculation and is achieved by giving an explicit
moduli description of a closed subscheme in GrG approximating Mµ in the
sense that

Mµ,F ⊂ Gr∇≤µ

and that the top dimensional irreducible components of Gr∇≤µ⊗OF generi-
cally identify with theM(λ+ρ,ρ,...,ρ),F for dominant λ with λ+eρ ≤ µ1+. . .+µe.

The moduli description of Gr∇≤µ is primarily Lie theoretic, and can be viewed
as either an infinitesimal version of being fixed by the loop rotation, or as
an incarnation of Griffiths transversality for Breuil–Kisin modules. It is in
these calculations that the restriction on charF and the strict dominance
of the µi play a crucial role.

● To finish the proof it remains to identify the nλ’s with the representation
theoretic multiplicities mλ. For this we consider the G-equivariant ample
line bundle L on GrG obtained by pulling back the determinant bundle
along the adjoint representation. The restriction of L to M(µ1+ρ,...,µe+ρ)⊗O
FracO can be expressed explicitly as a product of equivariant line bundles
on flag varieties. Using ampleness of L and flatness of M(µ1+ρ,...,µe+ρ) over
O we are therefore able to identify, for sufficiently large n,

H0
(M(µ1+ρ,...,µe+ρ) ⊗O F,L⊗n) =

e

⊗
i=1

W (np(µi + ρ))

as G-representations over F. Here p(η) = ∑α∨⟨α
∨, η⟩α∨ is the homomor-

phism from cocharacters to characters induced by the Killing form. In
Section 10 we show that if X is a T -equivariant scheme admitting an
equivariant ample line bundle LX then any identity of cycles between
T -equivariant closed subschemes induces an asymptotic formula between
the global sections of high powers of LX inside the Grothendieck group
of T -representations. Applying this to (1.2) and L produces a formula
involving the nλ which asymptotically relates [⊗

e
i=1W (np(µi + ρ))] and

[W (np(λ+ρ))⊗W (np(ρ))⊗e−1], in the sense that an appropriate difference
is polynomial in n of degree < edimG/B. In Sections 12 and 13 we show,
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using elementary manipulations with the Weyl character formula, that such
asymptotic relations can only occur if mλ = nλ, proving Theorem 1.1.

Our second main theorem specialises to the case of residue characteristic p, and
proves new instances of one direction of the Breuil–Mézard conjecture (namely
that Galois multiplicities are ≤ automorphic multiplicities). It is deduced from
Theorem 1.1 by relating the geometry of the Mµ’s to that of moduli spaces of
crystalline representations.

Theorem 1.3. Continue to assume G admits a twisting element ρ and let K/Qp be

a finite extension with ramification degree e. Let R◻,cr,µ
ρ denote the framed deforma-

tion ring of a fixed ρ ∶ GK → G(Fp) classifying G-valued crystalline representations
with Hodge type µ = (µκ)κ∶K→Qp

. Suppose further that each µκ is strictly dominant

and, for each κ0 ∶ k → Fp,

∑
κ∣k=κ0

⟨α∨, µκ⟩ ≤ p

for all roots α∨ of G. Then, as dimG + [K ∶ Qp]dimG/B-dimensional cycles,

[R◻,cr,µ
ρ ⊗Zp Fp] ≤ ∑

λ

mλ[R
◻,cr,(λ+ρ,ρ,...,ρ)
ρ ⊗Zp Fp]

where again mλ denotes the multiplicity of the Weyl module W (λ) of highest weight
λ inside ⊗e

i=1W (µi − ρ).

WhenG = GLn we can again identify the µκ with n-tuples of integers (µκ,1, . . . , µκ,n)
so that ρ = (n−1, n−2, . . . ,1,0). Then the bound on the µκ’s is equivalent to asking
that

∑
κ∣k=κ0

(µκ,1 − µκ,n) ≤ p

In particular, we see that the theorem, roughly speaking, accesses Hodge types
contained in the interval [0, p/e]. Note that since we also ask each µκ to be strictly
dominant we have µκ,1 − µκ,n ≥ n − 1 and so µ as in Theorem 1.3 will only exist
when e(n − 1) ≤ p.

The crux of Theorem 1.3’s proof lies in connecting crystalline representations to
the Mµ,F. This passage is achieved via the intermediary of Breuil–Kisin modules
associated to crystalline representations. To explain this we assume, for notational
simplicity, that K is totally ramified over Qp and let O be the ring of integers
in a finite extension containing the Galois closure of K and with residue field F.
Let M denote the Breuil–Kisin module associated to a crystalline representation
valued in G(O). This is a G-torsor on SpecO[[u]] equipped with an isomorphism
ϕ∗M[ 1

E(u)
] ≅ M[ 1

E(u)
], where ϕ is given by u ↦ up and E(u) is the minimal

polynomial of a fixed choice of uniformiser π ∈ K. Any trivialisation ι of M over
SpecO[[u]] produces an O-valued point Ψ(M, ι) ∈ GrG describing the relative
position of M and ϕ∗M. We prove that if the Hodge type µ of the crystalline
representation satisfies the bound from Theorem 1.3 then Ψ(M, ι) ⊗O F ∈ Mµ,F.
The following describes the central idea:

● Consideration of Kisin’s original construction of M from [Kis06] shows that,
without any bound on µ, one has

X ⋅Ψ(M, ι)[ 1
p
] ∈Mµ[

1
p
]
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for X ∈ G(Orig[ 1
λ
]) the automorphism inducing a Frobenius equivariant

identification M⊗Orig[ 1
λ
] ≅ D ⊗Orig[ 1

λ
]. Here D is the filtered ϕ-module

associated to the crystalline representation, Orig is the ring of power series

convergent on the open unit disk over FracO, and λ = ∏n≥0 ϕ
n(

E(u)
E(0)

).

● While X will almost never be defined integrally, calculations of [Liu15] and
[GLS14] bound the order of 1

p
in the coefficients of X (more precisely, they

bound the coefficients of the monodromy operator from which X can be
recovered). Using this we are able to show that a truncation Xtrun of X
modulo sufficient high powers of E(u) (depending upon µ) is such that
Xtrun is integral, ≡ 1 modulo the maximal ideal of O, and still satisfies

Xtrun
⋅Ψ(M, ι)[ 1

p
] ∈Mµ[

1
p
]

Thus Ψ(M, ι) ⊗O F ∈Mµ,F as desired.

More generally this construction works whenever the crystalline representation is
valued in G(A) for A any finite flat O-algebra for which the associated Breuil–Kisin
module is a G-torsor on SpecA[[u]] (which is not automatic). As a consequence, if
one considers the standard diagram (whose construction goes back to [Kis09b] and
[PR09])

Ỹ

X Y GrG

Ψ

Γ

Θ

in which X denotes an appropriate moduli space of crystalline Galois representa-
tions, Y a moduli space of Breuil–Kisin modules associated to crystalline Galois
representations, and Ỹ a rigidification of Y classifying an additional choice of trivi-
alisation, then the restriction of Ψ to the fibre over SpecF of the closed locus Ỹ µ ⊂ Ỹ
of Breuil–Kisin modules of Hodge type µ factors through Mµ,F. An additional (but
much simpler) argument shows that, under the bound on µ, the morphism Ψ is
formally smooth over Mµ,F. As a result the cycle identities in Theorem 1.1 can be
pulled back along Ψ, descended along Γ, and then pushed forward along the proper
morphism Θ. Since we only know that the preimage of Mµ,F contains Ỹ µ ⊗ F this
process produces an identity of cycles

[Xµ
0 ] = ∑

λ

nλ[X
(λ+ρ,ρ,...,ρ)
0 ]

inside X⊗F with [Xµ⊗F] ≤ [Xµ
0 ] for Xµ ⊂X the locus of crystalline representations

of Hodge type µ. However, by the last part of Theorem 1.1, and the fact that over
each Mµ,F the morphism Ψ is smooth with irreducible fibres, we can additionally

show that X
(λ+ρ,ρ,...,ρ)
0 is irreducible and generically reduced. Thus [X

(λ+ρ,ρ,...,ρ)
0 ] =

[X(λ+ρ,ρ,...,ρ) ⊗ F]. This gives the inequality in Theorem 1.3. The most natural
choice for X would be the moduli stack of Galois representations, constructed in
[EG23] when G = GLn. Since the case of more general groups has yet to be written
up (though this is likely to be addressed by work of Lin, see for example [Lin23])
we take, in the body of the text, X equal to the formal spectrum of a Galois
deformation ring.

The methods of this paper do not appear to give any way to prove an equality
in Theorem 1.3. This would come down to showing that [Xµ ⊗ F] ≤ [Xµ

0 ] is an
equality which ultimately, is a question about producing crystalline lifts with Hodge
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type µ of torsion Breuil–Kisin modules whose relative position in GrG is contained
in Mµ,F. On the other hand, at least when G = GLn, equality could be obtained
by proving the full support of patched modules for e.g. at Hodge types of the form
(λ + ρ, . . . , ρ). We hope to do this in future work.

Additional remarks.

● We don’t know if Theorem 1.1 remains true without the bound on charF,
or whether this bound, if necessary, is at all sharp. It is, however, worth
observing that the bound in Theorem 1.1 is somewhat natural because of its
relation to the irreducibility of the W (λ) appearing in⊗e

i=1W (µi−ρ). More
precisely, recall from [Jan03, 5.6] that, when F has positive characteristic,
W (λ) is simple when viewed as an algebraic representation over F whenever
0 ≤ ⟨α∨, λ + ρ⟩ ≤ p. Since W (λ) appears in ⊗

e
i=1W (µi − ρ) only if λ ≤

∑
e
i=1(µi − ρ) each such W (λ) will be simple if

e

∑
i=1

⟨α∨, µi⟩ ≤ charF + (e − 1)maxα∨⟨α
∨, ρ⟩

If maxα∨⟨α
∨, ρ⟩ = 1 (e.g. if G = GL2) then this is exactly the bound in

Theorem 1.1 and so one might hypothesise that Theorem 1.1 remains true
at least under this stronger bound. On the other hand, the irreducibility of
the W (λ) does not appear to play any direct role in our methods, making
the significance of these observations questionable.

● In contrast, the stronger bound on the µ in Theorem 1.3 is far more unnat-
ural. It arises from certain estimates in p-adic Hodge theory which could
quite possibly be improved, at least so that they agree with the bound in
Theorem 1.1.

● The requirement in Theorem 1.3 that the µκ be strictly dominant arises
only from its appearance in Theorem 1.1. In particular, if a version of The-
orem 1.1 could be proven for not necessarily strictly dominant cocharacters
then the same arguments would allow any such cycle identities to be trans-
ferred to an inequality of cycles of crystalline representations with irregular
Hodge types.

● While we suppress it from the notation we are not able to show that the
Mµ,F do not depend upon the choice of O and the π1, . . . , πe. Indeed, a more
natural construction of the Mµ,F would involve taking Mµ as the closure
inside the Beilinson–Drinfeld grassmannian over AeZ of an embedding an
e-fold product of flag varieties over the locus of pairwise distinct tuples in
AeZ. Then one could define Mµ,F as the fibre over 0 ∈ AeF, which would be
independent of any choices. The problem is that, with this definition, we
would need to know that Mµ,F is flat around 0 ∈ AeZ and this is probably
a rather subtle question (the analogous assertion for Schubert varieties is
unknown for G not of type A).

Connections to previous work. We conclude by saying a little about how this
paper relates to previous work. Concrete results so far towards Breuil–Mézard fall
into two broad categories and (with a few exceptions that we mention shortly) all
consider the case of GLn. The first category considers the situation where G = GL2

and K = Qp. Here the conjecture is now essentially known, see [Kis09a, Paš15,
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HT15, San14, Tun21]. These results rely on the existence of a form of the p-adic
Langlands correspondence, and therefore have little direct relation to our work.

The second category treats the conjecture in either higher dimensions and/or
with K a finite extension of Qp, but at the cost of making (as we do) very strong
assumptions on the size of the Hodge types appearing. For example, [GK14] proves
the conjecture for any K/Qp and two dimensional potentially crystalline represen-
tation of GK with Hodge type (0,1), while [LLHLM18] proves the conjecture for
K/Qp unramified and n-dimensional (tamely) potentially crystalline representation
of GK whose Hodge type is bounded by an inexplicit formula in terms of p and the
tame type (which, at the very least, requires the Hodge types to be ≤ p)

While the assumptions of both [GK14] and [LLHLM18] are entirely perpendic-
ular to ours (in situations where the assumptions overlap the statement of Breuil–
Mézard is vacuous) their methods are much closer in sprit to those of our paper.
Indeed, both use moduli spaces of Breuil–Kisin modules to control moduli spaces
of Galois representations, and describe the former moduli spaces in terms of closed
subschemes inside an affine grassmannian. This is particularly true of the closed
subschemes appearing in [LLHLM18] which are defined as a degeneration of a single
flag variety (recall they consider e = 1) in an affine flag variety (i.e. a twisting of
GrG which accounts for the tame type). Clearly, combining this definition with our
construction of Mµ,F describes candidate closed subschemes modelling the geome-
try of Breuil–Kisin modules associated to potentially crystalline representations of
any finite extension of Qp (at least for small Hodge types). On the other hand,
there are significant points of departure from our methods and those of [GK14] and
[LLHLM18]. While we use the control of moduli of Breuil–Kisin modules to directly
analyse the special fibres of moduli of Galois representations, in loc. cit. they are
used as a means to prove modularity lifting theorems, which are in turn used to
control the moduli spaces of local Galois representations using patched modules.

Finally, while the majority of work towards Breuil–Mézard has focused on the
case of GLn, there has also been considerations of other groups. In [GG15] and
[Dot18] the conjecture is considered for the group of units in a central division alge-
bra, and in the latter it is shown that these conjectures follow from the conjecture
for GLn. In [DR22] the conjecture for PGLn is also shown to follow from the case
of GLn. We also mention [Lev15] and [BL20] which use methods similar to ours
to describe some deformation rings on crystalline representations valued in split
reductive G.

Acknowledgements. I would like to thank Yifei Zhao for many helpful conversations.
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Part 1. Cycles identities in the affine grassmannian

2. Notation

2.1. Let O be a discrete valuation ring with residue field F and fraction field E.
Let G be a split reductive group over SpecO with connected fibres together with a
choice of maximal torus T . Let X∗(T ) = Hom(Gm, T ) and X∗(T ) = Hom(T,Gm)

and write ⟨ , ⟩ for the natural pairing X∗(T ) ×X∗(T ) → Z. Let R∨ ⊂ X∗(T ) be
the roots (G,T ) and for α∨ ∈ R∨ write α ∈ X∗(T ) for the corresponding coroot.
Let W be the Weyl group of (G,T ). Choose a set of positive roots R∨

+ ⊂ R
∨, with

associated Borel B. Let R+ denote the corresponding set of positive coroots. Recall

λ∨ ≤ µ∨⇔ µ∨ − λ∨ ∈ ∑
α∈R∨

+

Z≥0α
∨

and that λ∨ ∈ X∗(T ) is dominant if ⟨λ∨, α⟩ ≥ 0 for all positive coroots α ∈ R+. We
say λ∨ is strictly dominant if ⟨λ∨, α⟩ ≥ 1. We likewise make sense of ≤ on X∗(T ) as
well as dominant and strictly dominant λ ∈X∗(T ).

Definition 2.2. An element ρ ∈ X∗(T ) is called a twisting element if ⟨α∨, ρ⟩ = 1
for all simple roots α∨. Similarly ρ∨ ∈X∗(T ) is a twisting element if ⟨ρ∨, α⟩ = 1 for
all simple coroots α.

Notice that if ρ ∈X∗(T ) is a twisting element then ρ− 1
2 ∑α∈R+ α is W -invariant.

Also λ ∈X∗(T ) is strictly dominant if and only if λ − ρ is dominant.

3. Torsors

3.1. Throughout this paper we view G-torsors from the following two equivalent
viewpoints:

● A G-torsor E on SpecA is an A-scheme equipped with an action of G so
that fppf (equivalently etale) locally on A one has E ≅ G ×O SpecA.

● A fibre functor (a faithful exact tensor functor) from the category of rep-
resentations of G on finite free O-modules into the category of projective
A-modules.

Any G-torsor in the first sense induces a fibre functor which sends a representation
χ ∶ G→ GL(V ) onto the contracted product

E
χ
∶= E ×

χ V = E × V / ∼

That this construction produces an equivalence of categories is proved in e.g.
[Bro13, 4.8]. We always write E0 for the trivial G-torsor and a trivialisation of
a G-torsor on SpecA is an isomorphism E ≅ E0 over SpecA.

4. Affine grassmannians

Fix an integer e ≥ 1 and pairwise distinct π1, . . . , πe in the maximal ideal of O.
For any O-algebra A we write E(u) = ∏

e
i=1(u − πi) ∈ A[u].

Definition 4.1. Let GrG denote the projective ind-scheme over O whose A-points,
for any O-algebra A, classify isomorphism classes of pairs (E , ι) where

● E is a G-torsor over SpecA[u],
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● ι is a trivialisation of E over the open subscheme SpecA[u,E(u)−1], i.e. an
isomorphism

E∣SpecA[u,E(u)−1] ≅ E
0
∣SpecA[u,E(u)−1]

where E0 denotes the trivial G-torsor.

We also consider variants GrG,i of GrG for i = 1, . . . , e which are again projective
ind-schemes over O, and whose A-points classify isomorphism classes of pairs (E , ι)
with E a G-torsor on SpecA[u] and ι is a trivialisation of E over the open subscheme
SpecA[u, (u − πi)

−1]. Notice that for each i there are natural closed immersions
GrG,i → GrG. Each of GrG and GrG,i are also functorial in G.

Remark 4.2. When G = GLn the above functor is a colimit over a ≥ 0 of the functors
sending an O-algebra A onto the set of rank n projective A[u] submodules

E(u)aA[u]n ⊂ E ⊂ E(u)−aA[u]n

Since a submodule E ⊂ E(u)aA[u]n is A[u]-projective of rank n if and only if
E(u)aA[u]n/E is A-projective (see [Zhu17, Lemma 1.1.5]) each subfunctor is rep-
resented by a subfunctor of the grassmannian classifying projective A-submodules
of E(u)−aA[u]n/E(u)aA[u]n, which shows the ind-representability of GrGLn .

For general G one chooses a faithful representation into GLn and, using [Zhu17,
1.2.6], identifies GrG as a closed sub-indscheme of GrGLn .

Lemma 4.3. For any O-algebra A set Â[u]E(u) equal the E(u)-adic completion

of A[u]. Then the A-valued points of GrG functorially identify with isomorphism

classes of G-torsors on Spec Â[u]E(u) together with a trivialisation after inverting

E(u). Similarly for A-valued points of GrG,i with E(u) replaced by (u − πi).

Proof. This follows from the Beauville–Laszlo gluing lemma [BL95]. �

4.4. If A is an E-algebra and ni ∈ Z≥0 then, since E[u] is principal ideal domain,
the product of the quotient maps describes an isomorphism

A[u]

∏
e
i=1(u − πi)

ni
≅

e

∏
i=1

A[u]

(u − πi)ni

In particular, this gives an isomorphism Â[u]E(u) ≅ ∏
e
i=1 Â[u](u−πi) where the com-

pletions are respectively taken against the ideals generated by E(u) and (u − πi).
As a consequence, we obtain:

Corollary 4.5. There is an isomorphism

GrG⊗OE ≅ (GrG,1 ×O . . . ×O GrG,e) ⊗O E

written (E , ι) ↦ (Ei, ιi)i=1,...,e on A-valued points, so that

E ⊗A[u] Â[u]E(u) =
e

∏
i=1

Ei ⊗A[u] Â[u]u−πi

with ι = ∏i ιi.

4.6. The isomorphism in Corollary 4.5 has an alternative description. For any
O-algebra A consider the open subsets

Ui = SpecA[u,∏
j≠i

(u − πj)
−1

], Vi = SpecA[u, (u − πi)
−1

]
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of SpecA[u]. Then Vi = ⋃j≠iUj , Vi ∩ Ui = SpecA[u,E(u)−1] and, if A is an E-
algebra, then

SpecA[u] = ⋃
i

Ui = Vi ∪Ui

Then Ei is the G-torsor obtained by glueing E∣Ui and E0∣Vi along the restriction of
ι to Ui ∩ Vi = SpecA[u,E(u)−1]

Notation 4.7. For λ ∈X∗(T ) write Eλ,i for the O-valued point

(E
0, (u − πi)

λ
) ∈ GrG,i

where E0 denotes the trivial G-torsor on SpecO[u] and (u−πi)
λ denotes the auto-

morphism of E0∣SpecO[u,E(u)−1] induced by multiplication by λ(u−πi) ∈ G(O[u,E(u)−1]).
We then define the locally closed subscheme

GrG,i,λ ⊂ GrG,i

as the orbit of Eλ,i under the action of the group scheme L+G with A-valued points
G(A[u]).

Lemma 4.8. For each λ ∈ X∗(T ) and i = 1, . . . , e the morphism G → GrG,i given
by g ↦ gEλ,i induces a closed immersion

G/Pλ → GrG,i

where

Pλ = {g ∈ G ∣ limt→0 λ(t)
−1gλ(t) exists}

Equivalently, Pλ is the parabolic subgroup of G generated by T and the roots sub-
groups Uα∨ for α∨ ∈ R∨ with ⟨α∨, λ⟩ ≤ 0.

Proof. The A-points of the stabiliser in G of Eλ consists of those g ∈ G(A) for which
λ(u − πi)

−1gλ(u − ıi) ∈ G(A[u]). Therefore, this stabiliser is precisely Pλ and we
obtain a monomorphism G/Pλ → GrG,i. Since Pλ is a parabolic subgroup of G
the quotient G/Pλ is proper over O. Thus G/Pλ → GrG,i is also proper. Proper
monomorphisms are closed immersions [Sta17, 04XV] so the lemma follows. �

Definition 4.9. For µ = (µ1, . . . , µe) with µi ∈ X∗(T ) set Mµ ⊂ GrG equal to the
scheme theoretic image of the composite

(G/Pµ1 ×O . . . ×O G/Pµe)⊗O E → (GrG,1 ×O . . . ×O GrG,e)⊗O E ≅ GrG⊗OE → GrG

(the isomorphism coming from Lemma 4.5).

4.10. The A-valued points of G/Pλ classify filtrations of type λ on the trivial G-
torsor over SpecA (i.e exact tensor functors from the category of representations
of G on finite free O-modules V into the category of filtrations on V by A-modules
with projective graded pieces). From this point of view:

● The closed immersion G/Pλ → GrG,i from Lemma 4.8 sends a filtration Fil●

onto

Fil0(G⊗A Â[u](u−π))

where the filtration on G⊗A Â[u](u−π) is the tensor product of of Fil● with

the (u − πi)-adic filtration on Â[u](u−π).
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● The closed immersion (G/Pµ1 ×O . . . ×O G/Pµe) → GrG from Definition 4.9
sends an A-valued point corresponding to an e-tuple of filtrations (Fil●i )i
onto

Fil0(G⊗A Â[u]E(u))

where the filtration on G ⊗A Â[u]E(u) ≅ ∏
e
i=1G ⊗A Â[u]u−πi is the i-fold

product of the tensor product of Fil●i and the (u − πi)-adic filtration on

Â[u](u−π).

5. Various Schubert varieties

Here we introduce some variants on the usual notation of Schubert varieties
inside the affine grassmannian.

Notation 5.1. For λ ∈ X∗(T ) write Eλ,F ∈ GrG(F) for the point corresponding to

(E0, uλ). Thus

Eλ,F = Eλ,i ⊗O F
with Eλ,i as defined in Notation 4.7 and for any i = 1, . . . , e. We also write GrG,λ,F =
GrG,λ,i⊗OF for any i = 1, . . . , e. Equivalently, GrG,λ,F is the L+G-orbit of Eλ,F.

For λ ∈X∗(T ) the Schubert variety GrG,≤λ,F ⊂ GrG⊗OF is usually defined as the
closure of GrG,λ,i⊗OF (for any i = 1, . . . , e). Then GrG,≤λ,F is reduced, irreducible,
and can be expressed as

GrG,≤λ,F = ⋃
λ′≤λ

GrG,λ′,F

We would like to use GrG,≤µ1+...+µe,F as an ambient space in which to study Mµ⊗O
F. However, the containment of Mµ ⊗O F in GrG,≤µ1+...+µe,F is unclear due to
both varieties construction as a closure. For this reason we instead use a moduli
construction which is close to (and conjectured to equal) GrG,≤λ,F.

Definition 5.2. Let V be a freeO-module. Any A-valued point of GrG corresponds
to a projective A[u]-submodule of V ⊗O A[u,E(u)−1] and so, for any e-tuple of

integers (ni), we may consider the closed subfunctor Y
≥(ni)

GL(V )
⊂ GrGL(V ) consisting

of those E for which

(5.3) E ⊂
e

∏
i=1

(u − πi)
niV ⊗O A[u]

If µ = (µ1, . . . , µe) with µi ∈X∗(T ) dominant then define

YG,≤µ = ⋂
χ

(GrG ×χ,GrGL(V )Y
≥(⟨w0χ

∨,µi⟩)

GL(V )
)

where w0 ∈ W is the longest element and the intersection runs over irreducible
algebraic representations χ ∶ G→ GL(V ) of highest weight χ∨.

Example 5.4. Suppose that G = GLn so that A-valued points of GrG identify with
projective A[u]-submodules E ⊂ A[u,E(u)−1]n. If

µ = (µ1, . . . , µe), µi = (µi,1 ≥ . . . ≥ µi,n)

then E ∈ YG,≤µ ⊗O F then

(5.5)
j

⋀(E) ⊂
e

∏
i=1

(u − πi)
µi,n+...+µi,n−j+1A[u](

n
j
)
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for all j = 1, . . . , n. Indeed, if χ ∶ G → GL(V ) equals the j-th exterior power of the
standard representation, then the induced morphism GrG → GrGL(V ) sends E onto

⋀
j(E) and so

GrG ×χ,GrGL(V )Y
≥(⟨w0χ

∨,µi⟩)

GL(V )

is the closed subscheme consisting of E as in (5.5). This is because

χ∨ = (1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
j ones

,0, . . . ,0)

and so ⟨w0χ
∨, µi⟩ = µi,n+. . .+µi,n−j+1. In fact, since every highest weight representa-

tion of GLn is a quotient of tensor products of these exterior powers representations,
conditions (5.5) suffice to determine YG,≤µ.

The following lemma describes the basic properties of YG,≤µ that we need.

Lemma 5.6. Let µ1, . . . , µe ∈ X∗(T ) be dominant. Then YG,≤µ ⊗O F only depends
upon µ1 + . . . + µe, contains GrG,µ1+...+µe,F as an open subset, and

(YG,≤µ ⊗O F)red = ⋃
λ≤µ1+...+µe

GrG,λ,F

Proof. That YG,≤µ⊗O F only depends upon µ1 + . . .+µe is clear from the definition.
It is also clear from the definition that YG,≤µ contains Eλ,F ∈ GrG(F) if and only if
λ ≤ µ1 + . . . + µe. This implies

(YG,≤µ ⊗O F)red = ⋃
λ≤µ1+...+µe

GrG,λ,F

It remains to show GrG,µ1+...,µe,F is open in YG,≤µ⊗OF. This will follow if YG,≤µ⊗OF
is reduced at Eµ1+...+µe,F, which can be achieved by a simple tangent space compu-
tation identifying the tangent space of YG,≤µ ⊗O F at Eµ1+...+µe,F with the tangent
space of GrG,µ1+...+µe,F. See [KMW18, §3]. �

Remark 5.7. The construction of YG,≤µ ⊗O F was proposed in [FM99] as a moduli
interpretation of GrG,≤µ1+...+µe,F. However, it is an open question whether YG,≤µ⊗O
F = GrG,≤µ1+...+µe,F (equivalently, whether YG,≤µ ⊗O F is reduced). The equality is
known when G = SLn and F has characteristic zero, see [KMW18].

Lemma 5.8. Under the isomorphism GrG⊗OE ≅ (GrG,1 ×O . . . ×O GrG,e) ⊗O E
from Lemma 4.5 we have

YG,≤µ ⊗O E ≅ (YG,1,≤µ1
×O . . . ×O YG,e,≤µe) ⊗O E

where YG,i,≤µi ⊂ GrG,i is defined as a special case of Definition 5.2.

Proof. The lemma reduces to showing that, for any tuple (ni) of integers and any
finite free O-module V ,

Y
≥(ni)

GL(V )
⊗O E = (Y ≥n1

GL(V ),1
×O . . . ×O Y

≥ne
GL(V ),e

) ⊗O E

under the identification from Lemma 4.5. This is clear since if A is an E-algebra

then the isomorphism Â[u]E(u) ≅ ∏
e
i=1 Â[u]u−πi identifies the ideal generated by

∏(u − πi)
ni with the product of the ideals generated by (u − πi)

ni . �

The reason we introduce Definition 5.2 is because it easily allows us to prove:

Proposition 5.9. For µ = (µ1, . . . , µe) with µi ∈ X∗(T ) dominant we have Mµ ⊂

YG,≤µ.
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Proof. It suffices to show Mµ ⊗O E ⊂ YG,≤µ because YG,≤µ is closed in GrG. By
Lemma 5.8 we are reduced to showing that G/Pµi → GrG,i factors through YG,i,≤µi .
Since YG,i,≤µi is G-stable it is enough to show Eµi,i ∈ YG,i,≤µi , and this is clear. �

6. Approximations via Gr∇G

When G = GLn the spaces Mµ⊗OF were accessed in [Bar21, §7] by constructing a

subfunctor Gr∇G ⊂ GrG with Mµ ⊂ Gr∇G. The subfunctor Gr∇G consists of E ∈ GrG(A)

which, when viewed as projective A[u]-modules of A((u))n, satisfy

E(u)∇(E) ⊂ E

for ∇ the operator on A((u))n given coordinate-wise via d
du

. If E is generated by
(e1, . . . , en)X for a matrix X ∈ GLn(A((u))) then this is equivalent to asking that

E(u)X−1 d

du
(X) ∈ Mat(A[[u]])

In this section we show how to extend this construction to general G.

6.1. The following construction works when G = SpecOG is any affine algebraic
group over O. Set g = Lie(G). In what follows we will interpret elements of g as
derivations OG → O over O where OG acts on O via the counit map e ∶ OG → O.
The logarithmic derivative can then be described as a map

dlog ∶ G(B) → g⊗Z ΩB/O

for any ring B. To define this map identify ΩG/O = L(G)∨ ⊗O OG where L(G)

denotes the translation invariant derivations OG → OG. Then

g⊗O ΩG/O = HomO(L(G),g) ⊗O OG

and the map L(G) → g given by composition with the counit e defines a canonical
global section. For any g ∈ G(B) define dlog(g) as the image of this section under
g ⊗O g

∗ΩG/O → g ⊗O ΩB/O. If A is any O-algebra and B = A[u,E(u)−1] then we
obtain an element

dlogu(g) ∈ g⊗O A[u,E(u)−1
]

by evaluating dlog(g) at the derivation d
du

∶ A[u,E(u)−1] → A[u,E(u)−1]. This
construction is functorial in G.

The following example motivates us calling this construction the logarithmic
derivative.

Example 6.2. Let G = GLn with coordinates Tij and write ι ∶ OG → OG for the

coinverse map. Write d
dTij

for the element of g sending Tij ↦ 1 and zero on all other

coordinates. We claim that the section

(6.3) ∑
ij

d

dTij
⊗ (∑

m

ι(Tim)d(Tmj)) ∈ g⊗O ΩG/O

coincides with the map L(G) → g given by composition with the counit. If ∆ ∶

Tij ↦ ∑l Til ⊗ Tlj is the comultiplication map then L(G) → g has an inverse given
by d ↦ (id⊗d) ○ ∆ (see for example [Mil17, 12.24]). Therefore we can check the
claim by evaluating ∑m ι(Tim)d(Tmj) at (id⊗ d

dTlk
) ○∆. Since

(id⊗
d

dTlk
) ○∆ ∶ Tmj ↦

⎧⎪⎪
⎨
⎪⎪⎩

Tml if j = k

0 otherwise
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this evaluation is equal to

⎧⎪⎪
⎨
⎪⎪⎩

∑m ι(Tim)Tml if j = k

0 if j ≠ k

Since composing (ι⊗ id)○∆ with multiplication OG⊗OG → OG equals the counit e
it follows that the above evaluation is 1 if ij = lk and zero otherwise. This verifies
our claim. If g = (gij) ∈ G(B) has inverse g−1 = (hij) then the image of (6.3) in
g⊗ΩB/O is

dlog(g) = ∑
ij

d

dTij
⊗ (∑

m

himd(gmj))

If B = A[u,E(u)−1] and we identify g = Matn×n(O) via d
dTij

then evaluating dlog(g)

at d
du

yields dlogu(g) = g
−1 d
du

(g).

Remark 6.4. If G is a flat and finite type over O then dlogu can alternatively
be constructed using the Tannakian viewpoint. As explained in e.g. [Lev15], an
element of g ⊗O A[u] is equivalent to a collection of endomorphisms XV for all
representations G → GL(V ) of G on finite free O-modules which are compatible
with exact sequences and satisfy XV1⊗V2 = XV1 ⊗ 1 + 1 ⊗XV2 . Example 6.2 shows
that dlogu(g) corresponds to the rule sending a representation ρ onto

ρ(g)−1 d

du
(ρ(g)) ∈ End(V )

(the compatibility of this rule with exact sequences and tensor products being an
easy computation).

Example 6.5. If G = Ga with coordinate T then write d
dT

for the element of g
sending T ↦ 1. In this case the section

d

dT
⊗ d(T ) ∈ g⊗O ΩG/O

coincides with the map L(G) → g given by composition with the counit and so if
g ∈ Ga(B) then

dlog(g) =
d

dT
⊗ d(b)

If B = A[u,E(u)−1] and we identify g = O via d
dT

it follows that dlogu(g) =
d
du

(g).

The next lemma contains what we will need to compute with dlogu(−).

Lemma 6.6. (1) For g, h ∈ G(A[u,E(u)−1]) we have

dlogu(gh) = Ad(h−1
)dlogu(g) + dlogu(h)

where Ad denotes the adjoint action of G on g.
(2) dlogu(g) = 0 for g ∈ G(A)

(3) udlogu(u
λ) ∈ Lie(T ) for λ ∈X∗(T ).

Proof. By choosing a faithful representation of G all these identities reduce to the
case of GLn, where they are clear given the interpretation of dlogu from Exam-
ple 6.2. �
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Definition 6.7. Define Gr∇G ⊂ GrG to be the subfunctor consisting of those (E , ι) ∈
GrG(A) for which there exist an fppf cover A→ A′ trivialising E so that, if ι ×A[u]

A′[u] is given by left multiplication by g ∈ G(A′[u,E(u)−1]), then

E(u)dlogu(g) ∈ g⊗O A[u]

This is a closed subfunctor since A[u,E(u)−1]/A[u] is a projective A-module. When
G = GLn this coincides with the subfunctor defined in [Bar21, 7.4]. Lemma 6.6
shows that Gr∇G is also G-stable.

Proposition 6.8. Mµ ⊂ Gr∇G for any µ = (µ1, . . . , µe).

Proof. Since Gr∇G is a closed subfunctor it suffices to show that Mµ⊗OE ⊂ Gr∇G. For
this observe that, under the identification GrG⊗OE ≅ (GrG,1 ×O . . . ×O GrG,e)⊗OE,
one has

Gr∇G⊗OE = (Gr∇G,1 ×O . . . ×O Gr∇G,e) ⊗O E

where Gr∇G,i is defined analogously to Gr∇G with the condition E(u)dlogu(g) ∈

g ⊗O A[u] replaced by (u − πi)dlogu(g) ∈ g ⊗O A[u]. We are therefore reduced to
showing that the closed immersions G/Pλ → GrG,i induced by any λ ∈X∗(T ) factor

through Gr∇G,i, and this follows from Lemma 6.6. �

7. Computations in Gr∇G

In this section we show that the inclusion Mµ ⊂ Gr∇G induces a reasonable topo-
logical description of Mµ ⊗ F provided µ is sufficiently small relative to the char-
acteristic of F. As with the previous section, this extend results from [Bar21, §7]
beyond G = GLn.

Proposition 7.1. Suppose that λ ∈X∗(T ) is dominant. If charF > 0 then assume
that

⟨α∨, λ⟩ ≤ charF + e − 1

for every positive root α∨. Then

GrG,λ,F ×GrG Gr∇G

is smooth and irreducible of dimension

∑
α∈R+

min{e, ⟨α,λ⟩}

Proof. As in the previous section we write g = Lie(G). Let t = Lie(T ) and write

g = t⊕ ⊕
α∨∈R∨

gα∨

for the root decomposition of g. For each α∨ ∈ R∨ we have the associated root

homomorphism xα∨ ∶ Ga → G which induces an identification dxα∨ ∶ Ga
∼
Ð→ gα∨ . See

for example [Jan03, 1.2].

Step 1. We begin by recalling a standard open cover of G/Pλ. Let U denote the
image of the morphism

∏
⟨α∨,λ⟩>0

A1
→ G

given by (aα∨)α∨ ↦ ∏α∨ xα∨(aα∨) (the product taken in an arbitrary, but fixed,
order). Then U is a closed subgroup of G and the induced morphism U → G/Pλ
is an open immersion. Furthermore, the W -translates of the image of U form an
open cover of G/Pλ. See [Jan03, 1.10] for more details.
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Step 2. Let Uλ denote the image of the morphism

∏
⟨α∨,λ⟩>0

A⟨α∨,λ⟩
→ L+G

given by (aα∨,0, aα,1, . . . , aα∨,⟨α∨,λ⟩−1)α∨ ↦ ∏α∨ xα∨(∑i aα∨,iu
i) (again the product

is taken in an arbitrary, but fixed, order). Then the morphism Uλ → GrG,λ,F
given by g ↦ guλ is an open immersion whose W -translates cover GrG,λ,F. To
see this note first that Uλ → GrG,λ,F is a monomorphism. Secondly, note that
Uλ → GrG,λ,F factors through the preimage of U under the morphism q ∶ GrG,λ,F →

G/Pλ sending guλ onto g modulo u. Thirdly, note that q−1(U) is smooth and
irreducible of dimension ∑α∈R+⟨α∨, λ⟩ = ⟨2ρ∨, λ⟩ (because the same is known to be
true of GrG,λ,F, see for example [Zhu17, 2.1.5]). Therefore Uλ → q−1(U), being a
monomorphism between integral schemes of the same dimension, is an isomorphism
(because monomorphisms are unramified [Sta17, 02GE] and unramified morphisms
are etale locally closed immersions [Liu02, 4.11]).

Step 3. We are going to compute the closed subscheme Uλ ×GrG Gr∇G. By definition
g ∈ Uλ(A) is contained in this closed subscheme if and only if

ue dlogu(gu
λ
) ∈ g⊗O A[u]

Lemma 6.6 shows this is equivalent to asking that

ueAd(u−λ)dlogu(g) ∈ g⊗O A[u]

It will therefore be necessary to compute dlogu(g) and we will do this using the
following two observations:

● If g = xα∨(a) for a ∈ A[u] then dlogu(g) = dxα∨(
d
du
a). This follows from

Example 6.5 and the functoriality of dlogu.
● If α∨ + β∨ ≠ 0 then

Ad(xα∨(a))dxβ∨(b) = dxβ∨(b) + ∑
i,j>0

cijdiα∨+jβ∨(a
ibj)

for some cij ∈ Z independent of a and b. This can be seen by passing the
formula

xα∨(a)xβ∨(b)xα∨(a)
−1

= xβ∨(b) ∏
i,j>0

xiα∨+jβ∨(cija
ibj)

found in e.g. [Jan03, 1.2.(5)] to the Lie algebra.

Step 4. Lemma 6.6 shows that dlogu(gxβ∨(b)) = Ad(xβ∨(−b))dlogu(g)+dlogu(xβ∨(b)).
This, together with the two bullet points from Step 3, allows an inductive compu-
tation of dlogu(g) for g = ∏⟨α∨,λ⟩>0 xα∨(aα∨) with aα∨ ∈ A[u]. We see that dlogu(g)

can be expressed as a sum, over γ∨ with ⟨γ∨, λ⟩ > 0, of terms

dxγ∨ (
d

du
aγ∨ +Cγ∨)

where Cγ∨ is a Z-linear combination of products of the aα∨ and d
du

(aα∨) for those
roots α∨ with ⟨α∨, λ⟩ > 0 and ⟨γ∨ − α∨, λ⟩ > 0. We can therefore write Cγ∨ =

Cγ∨,0 + Cγ∨,1u + Cγ∨,2u
2 + . . . with each Cγ∨,i = Cγ∨,i(aα∨,j) a polynomial in the
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coefficients of the aα∨ for α∨ with 0 < ⟨α∨, λ⟩ < ⟨γ∨, λ⟩. These polynomials have Z-
coefficients and depend only on the order in which the product defining g is taken.
It follows that ueAd(u−λ)dlogu(g) can likewise be expressed as a sum of the terms

(7.2) ue−⟨γ
∨,λ⟩dxγ∨ (

d

du
aγ∨ +Cγ∨)

The assumption that ⟨γ∨, λ⟩ − e + 1 ≤ charF means there exist unique polynomials
Dγ∨,i =Dγ∨,i(aα∨,i) in the coefficients of the aα for α∨ with 0 < ⟨α∨, λ⟩ < ⟨γ∨, λ⟩ so
that if

Dγ∨ =Dγ∨,1u +Dγ∨,2u
2
+ . . . +Dγ∨,⟨γ∨,λ⟩−e+1u

⟨γ∨,λ⟩−e+1

then d
du
Dγ∨ ≡ Cγ∨ modulo u⟨γ

∨,λ⟩−e+1. Again these polynomials depend only on the
order of the product defining g. Thus (7.2) is contained in gγ∨ ⊗O A[u] if and only
if

aγ∨ −Dγ∨ ∈ A + u⟨γ
∨,λ⟩−e+1A[u]

It follows that there is an isomorphism

∏
⟨γ∨,λ⟩>0

Amin{e,⟨γ∨,λ⟩}
→ Uλ ×GrG Gr∇G

sending (aγ∨,i)γ∨ onto

∏
γ∨
xγ∨ (a0 + aγ∨,1u

⟨γ∨,λ⟩−1
+ aγ∨,2u

⟨γ∨,λ⟩−2
+ . . . + aγ∨,min{e,⟨γ∨,λ⟩−}−1u

max{1,⟨γ∨,λ⟩}−e+1
+Dγ∨)

This shows that Uλ ×GrG Gr∇G is smooth of the claimed dimension.

Step 5. It remains to show that GrG,λ,F ×GrG Gr∇G is irreducible. For this recall the
action of Gm on GrG via loop rotations: if t ∈ A× and (E , ι) ∈ GrG,A then

t ⋅ (E , ι) = (x∗t E , x
∗
t ι)

where xt is the automorphism of SpecA[u] given by u↦ tu. This action stabilises
both GrG,λ,F and Gr∇G. Therefore, smoothness of GrG,λ,F ×GrG Gr∇G ensures it is an
affine bundle over its Gm-fixed points, see [Mil17, Theorem 13.47]. Since the fixed
point locus in GrG,λ,F is the G-orbit of Eλ,F, and since this is contained in Gr∇G, we

conclude that the fixed point locus of GrG,λ,F ×GrG Gr∇G is also this G-orbit. As this

orbit is irreducible the same is true for GrG,λ,F ×GrG Gr∇G. �

8. Naive cycle identities

Here we use Proposition 7.1 to produce a basic description of the cycles associated
to Mµ ⊗O F.

Definition 8.1. A d-dimensional cycle on any Noetherian (ind)-scheme X is a Z-
linear combination of integral closed subschemes in X of dimension d. The group
of all such cycles is denoted Zd(X). If F is any coherent sheaf on X we write

[F] = ∑
Z

m(Z,F)[Z]

where the sum runs over d-dimensional integral closed subschemes Z in X and
m(Z,Y ) denotes the OZ,ξ-dimension of Fξ for ξ ∈ Z the generic point. If i ∶ Y ⊂X
is a closed subscheme then we set [Y ] = [i∗OY ]. If X is a scheme then [Sta17, 02S9]
shows that Zd(X) can alternatively be defined as the cokernel of the map

K0(Coh≤d−1(X)) →K0(Coh≤d(X))
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where Coh≤d(X) denotes the category of coherent sheaves on X with support of
dimension ≤ d. Then [F] coincides with the image of the class of F .

Definition 8.2. For λ ∈X∗(T ) define Cλ ⊂ GrG⊗OF as the closure of GrG,λ,F ×GrG Gr∇.
Proposition 7.1 ensures that Cλ is an integral closed subscheme of dimension

∑
positive α∨

min{e, ⟨α∨, λ⟩}

provided ⟨α∨, λ⟩ ≤ charF + e − 1 for every positive root α∨.

Proposition 8.3. Assume that G admits a twisting element ρ ∈X∗(T ) and suppose
that µ = (µ1, . . . , µe) with µi ∈ X∗(T ) strictly dominant. If charF > 0 assume also
that

∑
i

⟨α∨, µi⟩ ≤ charF + e − 1

for every positive root α∨. Then there exists mλ ∈ Z so that as e∣R+∣-dimensional
cycles in GrG⊗OF

[Mµ ⊗O F] = ∑
λ′
mλ[Cλ+eρ]

with the sum running over dominant λ ≤ µ1+. . .+µe−eρ. Furthermore, mµ1+...+µe−eρ =

1.

Later on we will give the mλ a representation theoretic interpretation (see The-
orem 12.1).

Proof. Propositions 6.8 and 5.9 ensures Mµ ⊗O F factors through Gr∇G and YG,≤µ.
Lemma 5.6 implies (YG,≤µ ⊗O F)red = ⋃λ≤µ1+...+µe−eρGrG,λ+eρ,F and so

(8.4) (Mµ ⊗O F)red ⊂ ⋃
λ≤µ1+...+µe−eρ

GrG,λ+eρ,F ×GrG Gr∇G ⊂ ⋃
λ≤µ1+...+µe−eρ

Cλ+eρ

These unions run over λ which are not necessarily dominant. To show that the
containment still holds with the union running over dominant λ we use the as-
sumption that each µi is strictly dominant. This ensures that dimG/Pµi = ∣R∣ and
so dimMµ ⊗O F = e∣R+∣. Thus

dimCλ+eρ = ∑
positive α∨

min{e, ⟨α∨, λ + eρ⟩} ≤ dimMµ ⊗O F

with equality if and only if ⟨α∨, λ + eρ⟩ ≥ e for every positive α∨. Notice that
⟨α∨, λ + eρ⟩ ≥ e for every positive root α∨ (equivalently every simple root) if and
only if λ is dominant, because ⟨α∨, ρ⟩ = 1 whenever α∨ is simple. Thus, (8.4) can
be refined to:

(Mµ ⊗O F)red ⊂ ⋃Cλ+eρ

with the union running over dominant λ ≤ µ1 + . . . + µe − eρ. In other words,

[Mµ ⊗O F] = ∑
λ′
mλ[Cλ+eρ]

as desired. To finish the proof we have to mµ1+...+µe−eρ = 1, and for this it suffices
to show Cµ1+...+µe ⊂ Mµ ⊗O F and this this closed immersion becomes an open
immersion after restricting to an open subset of Cµ1+...+µe . Recall from Lemma 5.6
that GrG,µ1+...+µe,F is open in YG,≤µ ⊗O F. Therefore,

U ∶=Mµ ×GrG GrG,µ1+...+µe,F

is open in Mµ⊗O F. It is also non-empty because it is easy to see that Eµ1+...+µe,F ∈
Mµ. Therefore, U has dimension equal dimMµ ⊗O F. On the other hand U is
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a closed subscheme of GrG,µ1+...+µe,F ×GrG Gr∇. We saw in Proposition 7.1 that

GrG,µ1+...+µe,F ×GrG Gr∇ is smooth and irreducible of the same dimension. Thus,

U = GrG,µ1+...+µe,F ×GrG Gr∇. As Cµ1+...+µe is the closure of U we conclude that
Cµ1+...+µe ⊂ Mµ ⊗O F, and that this inclusion is an isomorphism over an open
subset. �

9. Irreducibility

Theorem 9.1. Assume that G contains a twisting element ρ ∈X∗(T ) and suppose
that λ ∈X∗(T ) is dominant. If charF > 0 then assume also that

⟨α∨, λ + eρ⟩ ≤ charF + e − 1

for every positive root α∨. Then, as cycles

[M(λ+ρ,ρ,...,ρ) ⊗O F] = [Cλ+eρ]

In other words, M(λ+ρ,ρ,...,ρ) ⊗O F is irreducible and generically reduced.

In order to prove the theorem we need the following lemma:

Lemma 9.2. Suppose µ = (µ1, . . . , µe) with each µi ∈ X
∗(T ) dominant. Then any

F-valued point of Mµ(F) can be expressed as

(E , g1u
µ1g2u

η
)

for some g1 ∈ G,g2 ∈ L
+G and η ≤ µ2 + . . . + µe.

Proof. Write Gr
(e−1)
G for the affine grassmannian defined as in Definition 4.1, but

with the e-tuple (π1, . . . , πe) replaced by the e − 1-tuple (π2, . . . , πe). Thus, the

A-points of Gr
(e−1)
G classify isomorphism classes of pairs (E , ι) with E a G-torsor on

A[u] and ι a trivialisation over SpecA[u,∏
e
i=2(u − πi)

−1]. We have a morphism

m0 ∶ G ×O Gr
(e−1)
G → GrG

(whose dependence on µ1 we suppress from the notation) given by (g,E , ι) ↦
(E , g(u−π1)

µ1 ○ ι). We will prove the lemma by showing that every closed point of

Mµ is contained in the image of G ×O Y
(e−1)

G,≤(µ2,...,µe)
(where Y

(e−1)

G,≤(µ2,...,µe)
⊂ Gr

(e−1)
G

is defined as in Definition 5.2) under m0. Using Lemma 5.6 we see this gives the
desired result.

First observe that, under the identifications of Lemma 4.5, m0 induces a surjec-
tion

(G ×O Gr
(e−1)
G ) ⊗O E → (G/Pµ1 ×O GrG,2 ×O . . . ×O GrG,e) ⊗O E

This is the case because (E , ι) ∈ GrG⊗OE is contained in the right-hand side if and
only if there is a g ∈ G such that (u − π1)

−µg ○ ι extends to a trivialisation of E on
U1 = SpecA[u,∏j≠1(u − πj)

−1]. In particular, this means that any E-valued point

of Mµ is mapped onto by some (g,E , ι) ∈ G⊗O Gr
(e−1)
G under m0.

We will be done if we can show that (E , ι) ∈ Y
(e−1)

G,≤(µ2,...,µe)
. Choose a represen-

tation ρ ∶ G → GL(V ) of highest weight χ and let Eρ ⊂ V ⊗O E[u,∏i≠1(u − πi)
−1]

correspond to the image of (E , ι) under Gr
(e−1)
G → Gr

(e−1)

GL(V )
. We have to show

(9.3) E
ρ
⊂

e

∏
i=2

(u − πi)
⟨−w0(χ),µi⟩V ⊗O E[u]
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Proposition 6.8 implies (E , g(u − π1)
µ1 ○ ι) ∈ YG,≤µ and so

ρ(g)(u − π1)
ρ○µ1(E

ρ
) ⊂

e

∏
i=1

(u − πi)
⟨−w0(χ),µi⟩V ⊗O E[u] ⇒

(u − π1)
ρ○µ1(E

ρ
) ⊂

e

∏
i=1

(u − πi)
⟨−w0(χ),µi⟩V ⊗O E[u] ⇒

E
ρ
⊂

e

∏
i=2

(u − πi)
⟨−w0(χ),µi⟩V ⊗O E[u, (u − π1)

−1
]

From this (9.3) follows, since we already know that Eρ ⊂ V ⊗OE[u,∏i≠1(u−πi)
−1].
�

Proof of Theorem 9.1. In view of Proposition 8.3, the theorem will follow if we can
show that Cλ′+eρ /⊂ M(λ+ρ,ρ,...,ρ) ⊗O F for any dominant λ′ < λ. We will do this by
choosing, for each λ′ < λ, an F-valued point in Cλ′+eρ which will not be contained in
M(λ+ρ,ρ,...,ρ) because it cannot be expressed in the form described by Lemma 9.2.

Step 1. Fix a dominant λ′ < λ and consider

(9.4) E ∶= ∏
α∨>0

xα∨(bα∨u
⟨α∨,λ′+ρ⟩

)Eλ′+eρ,F

for some bα∨ ∈ F. We claim that the bα∨ can be chosen so that

(1) E ∈ Cλ′+eρ
(2) bα∨ ≠ 0 for all simple α∨.

The calculations from Step 4 in the proof of Proposition 7.1 show that such bα∨

exist.

Step 2. Assume for a contradiction that E ∈M(λ+ρ,ρ,...,ρ). Lemma 9.2 implies

u−λ+ρg∏
α∨
xα∨(bα∨u

⟨α∨,λ′+ρ⟩
)Eλ′+eρ,F ∈ GrG,η,F

for some g ∈ G and some dominant η ≤ (e − 1)ρ. As λ + ρ is dominant we have
u−λ−ρB−uλ+ρ ∈ L+G for B− the Borel opposite to B. Since also G = ⋃w∈W B−wU
for U ⊂ B the unipotent subgroup, we can assume that g = wb for w1 ∈W and b ∈ U .
Thus

(9.5) u−λ−ρw1b∏
α∨
xα∨(bα∨u

⟨α∨,λ′+ρ⟩
)Eλ′+eρ,F ∈ GrG,η,F

Now recall from the proof of Proposition 7.1 the action of Gm on GrG via loop
rotations. This induces an action of L+T ⋊Gm on GrG (where Gm acts on L+T in
this semi-direct product via t ⋅x(u) = x(tu)). Each ξ ∈X∗(T ) induces a 1-parameter
subgroup Gm → L+T ⋊Gm via (t ↦ ξ(t), t). The resulting action of Gm on GrG
stabilises GrG,η,F and, if η is strictly dominant, the fixed points are the Ew(η),F for
w ∈W . As a consequence, if we take ξ = λ + ρ, then (9.5) gives

limt→0 t ⋅ u
−λ−ρw1b∏

α∨
xα∨(bα∨u

⟨α∨,λ′+ρ⟩
)Eλ′+eρ,F = Ew2(η),F

for some w2 ∈W . However

t ⋅ u−λ−ρw1b∏
α∨
xα∨(bα∨u

⟨α∨,λ′+ρ⟩
)Eλ′+eρ,F =

u−λ−ρw1b1∏
α∨
xα∨(bα∨u

⟨α∨,λ′+ρ⟩t⟨α
∨,λ′+ρ⟩

)Eλ′+eρ,F
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and so, since ⟨α∨, λ′ + ρ⟩ > 0 due to the dominance of λ′, we deduce that

w1bEλ′+eρ,F = Eλ+ρ+w2(η),F

Since λ′ + eρ is strictly dominant it follows that the image of b in G/B− is T -
stable. As U → G/B− is an open immersion we conclude that b = 1 and that
w1(λ

′ + eρ) = λ + ρ +w2(η).

Step 4. Substituting b = 1 and w1(λ
′ + eρ) = λ + ρ +w2(η) into (9.5) gives

(9.6) ∏
α∨
xα∨(bα∨u

⟨α∨,w3(η)−(e−1)ρ⟩
)Ew3(η),F ∈ GrG,η,F

for w3 = w
−1
1 w2. Since ⟨α∨,w3(η) − (e − 1)ρ⟩ ≤ 0 it follows that

∏
α∨
xα∨(bα∨u

⟨α∨,w3(η)−(e−1)ρ⟩
)Ew3(η),F ∈ GrηG,F ∩GrG,η,F

where GrηG,F is the opposite Schubert cell defined as the L−G-orbit of Eη,F where

L−G is the group scheme with A-valued points given by G(A[u−1]). It follows

from [Zhu17, 2.3.3] that ∏α∨ xα∨(bα∨u
⟨α∨,w3(η)−(e−1)ρ⟩)Ew3(η),F is contained in the

G-orbit of Eη,F. In particular, ∏α∨ xα∨(bα∨u
⟨α∨,w3(η)−(e−1)ρ⟩)Ew3(η),F is fixed under

the action of Gm by loop rotations.

Step 5. For the final step notice that

∏
α∨
xα∨(bα∨u

⟨α∨,w3(η)−(e−1)ρ⟩
)Ew3(η),F = u

w3(η)−(e−1)ρb0E(e−1)ρ

where b0 = ∏α∨>0 xα(bα) ∈ B. That this element is fixed by loop rotations is the

same as saying that uw3(η)−(e−1)ρtw3(η)−(e−1)ρb0u
(e−1)ρ ∈ uw3(η)−(e−1)ρb0u

(e−1)ρL+G
for t the variable of Gm. This implies that

Ad(b−1
0 )Dη(t) ∈ Ad(u(e−1)ρ

)g[[u]]

for Dη the derivative of w3(η) − (e − 1)ρ ∶ Gm → T at the identity. Notice that
Ad(b−1

0 )Dη(t) ∈ g so we must actually have

Ad(b−1
0 )Dη(t) ∈ t⊕ ⊕

α∨<0

gα∨

(recall t = Lie((T ))). On the other hand, passing from the identity in [Jan03, II.1.3]
to the Lie algebra and inducting shows that if t0 ∈ t then Ad(b−1

0 )t0 − t0 can be
expressed as a sum over γ∨ > 0 of terms

dxγ∨(bγ∨dγ
∨
(t0) +Dγ)

where dγ∨ denotes the derivate of γ∨ and Dγ is a Z-linear combination of products
of bα∨ for 0 < α∨ < γ∨. Since bγ∨ ≠ 0 for each simple γ∨ we must have Dη(t) = 0, i.e
w3(η) = (e−1)ρ. Thus w3 = 1 (i.e. w2 = w1) and η = (e−1)ρ, and so λ+ρ = w1(λ

′+ρ).
Since both λ and λ′ are dominant we must have w1 = 1 and so λ = λ′. This
contradicts the fact that λ′ < λ and finishes the proof. �
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10. Equivariant sheaves and their cycles

Our goal is now to give the coefficients appearing in Proposition 8.3 a represen-
tation theoretic meaning. To do this we will relate these cycle identities to relations
between global sections of line bundles on the Mµ.

10.1. If X is a finite type F-scheme and equipped with an action of the torus T ,
then we write KT

0 (X) for the Grothendieck group of the category of T -equivariant
coherent sheaves on X. If X is additionally proper over F then the Euler charac-
teristic [F] ↦ ∑i≥0(−1)i[Hi(X,F)] defines a homomorphism

χ ∶KT
0 (X) → R(T )

whereR(T ) = Z[X∗(T )] denotes the Grothendieck group of algebraic T -representations
(in which multiplication is given by the tensor product). For α∨ ∈ X∗(T ) we write
e(α∨) for its class in R(T ) and for V ∈ R(T ) we write Vα∨ ∈ Z for the multiplicity
of e(α∨) in V .

Definition 10.2. Suppose that d ≥ 0.

● DefineKT
0 (X)≤d as the Grothendieck group of the category of T -equivariant

coherent sheaves on X with support of dimension ≤ d.
● Let V = (Vn)n≥0 be a sequence of elements in R(T ). We say V is polynomial

of degree ≤ d if there exists a polynomial P (x) ∈ Q[x] of degree ≤ d so that

∑
α∨∈X∗(T )

∣Vn,α∨ ∣ ≤ P (n)

for all n ≥ 0 (here ∣ ⋅ ∣ denotes the usual absolute value).

Notice that if each Vn is effective (i.e. is the class of a T -representation Vn in R(T ))
then V is polynomial if and only if the dimensions of Vn are bounded by the value
at n of a polynomial. However the above definition also allows us to extend this
notion to elements which are not necessarily effective.

Remark 10.3. Note that there are homomorphisms KT
0 (X)≤d →KT

0 (X) which are
not typically injective.

Lemma 10.4. If V = (Vn)n≥0 and W = (Wn)n≥0 are polynomial of degree ≤ d then
(Vn +Wn)n≥0 and (VnWn)n≥0 are also polynomial of degree ≤ d.

Proof. This is clear since∑α∨ ∣Vn,α∨+Wn,α∨ ∣ ≤ ∑α∨ ∣Vn,α∨ ∣+∑α∨ ∣Wn,α∨ ∣ and similarly

∑α∨ ∣∑β∨+γ∨=α∨ Vn,β∨Wn,γ∨ ∣ ≤ ∑β∨,γ∨ ∣Vn,β∨ ∣∣Wn,γ∨ ∣ = (∑β∨ ∣Vn,β∨ ∣) (∑γ∨ ∣Vn,γ∨ ∣).
�

Lemma 10.5. Suppose that X is a proper F-scheme of finite type equipped with
a T -equivariant ample line bundle L and F ∈ KT

0 (X) is contained in the image of
imKT

0 (X)≤d. Then

χ(F ⊗ [L
⊗n

]) ∈ R(T )

is polynomial of degree ≤ d.

Proof. Using Lemma 10.4 we can assume that F is the class of a T -equivariant
sheaf G on X with support of dimension ≤ d. Since L is ample χ([G ⊗L⊗n]) equals
the class of H0(X,G ⊗ L⊗n) in R(T ) for sufficiently large n. Since the dimension
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of H0(X,G ⊗L⊗n) is for sufficiently large n the value at n of a polynomial P (x) of
degree equal the support of G it follows that for all n ≥ 0

∑
α∨

∣χ(G ⊗ L⊗n)α∨ ∣ = ∑
α∨
χ(G ⊗ L⊗n)α∨ ≤ P (n) +C

for a constant C >> 0. �

Proposition 10.6. Let F be a T -equivariant coherent sheaf on X with support of
dimension ≤ d and let

[F] = ∑
Z

nZ[OZ] ∈ Zd(X)

be the associated d-dimensional cycle. Assume that X is equipped with an ample
T -equivariant line bundle L and that nZ > 0 implies Z is T -stable. Then there are
qZ ∈ Z≥0 and θ∨Z,i ∈X

∗(T ) so that

χ(F ⊗L
⊗n

) −∑
Z

(
nZ

∑
i=1

e(θ∨Z,i)χ(L
⊗k−qZ ∣Z)) ∈ R(T )

is polynomial of degree < d.

Proof. We induct on the number of nZ > 0. If this is zero then the class of F has
support of dimension < d and so its class in KT

0 (X) is contained in imKT
0 (X)≤d−1.

Lemma 10.5 therefore implies χ(F ⊗ L⊗n) is polynomial of degree < d, and the
proposition holds. Otherwise, write IZ for the ideal sheaves corresponding to those
Z with nZ > 0. By assumption each such Z is T -stable and so INZ is a T -equivariant
coherent sheaf for any N ≥ 1. For N sufficiently large the support of INZ F does not
contain Z (see [Sta17, 0Y19]) and so the inductive hypothesis holds for INZ F . By
applying Lemma 10.5 to the identity

[F] = [I
N
Z F] + [F/I

N
Z F]

in KT
0 (X) we see that the proposition will hold if it holds for F/INZ F .

Since F/INZ F has support contained in Z we are reduced to proving the proposi-
tion when the support of F is a single irreducible component. Thus we can assume
Z = X and write [F] = n[OX] in Zd(X). Since L is ample there is an integer
q ∈ Z≥0 so that F ⊗L⊗q is generated by global sections. This gives a T -equivariant
surjection

V ⊗L
⊗−q

→ F

with V =H0(X,F⊗L⊗q). Since T is abelian we can choose a T -equivariant filtration

. . . ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ . . . V0 = V

with each graded piece of dimension one.

Claim. There exists j1, . . . , jn ∈ Z≥0 so that

[F] −
n

∑
i=1

[Vji/Vji+1 ⊗L
−q

] ∈ imKT
0 (X)≤d−1

Proof of Claim. Set Fj equal the image in F of Vj⊗L
−q. Then [F] = ∑j∈Z≥0[Fj/Fj+1]

in KT
0 (X). For each j we also have a T -equivariant exact sequence

0→ Gj → Vj/Vj+1 ⊗L
−q
→ Fj/Fj+1 → 0
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of coherent sheaves. Since Vj/Vj+1 ⊗ L
−q is locally free of rank one it follows that

exactly one of Gj and Fj/Fj+1 has support of dimension < d and exactly one has
support equal to X. Thus

[F] − ∑
suppFj/Fj+1=X

[Vj/Vj+1 ⊗L
⊗−q

]

= − ∑
suppFj/Fj+1=X

[Gj] + ∑
suppFj/Fj+1≠X

[Fj/Fj+1] ∈ imKT
0 (X)≤d−1

To finish the proof of the claim we just need to check that suppFj/Fj+1 =X exactly
n times. This follows because in Zd(X) we have [Vj/Vj+1 ⊗ L

⊗−q] = [X] and so
[F] = ∑suppFj/Fj+1=X[Vj/Vj+1 ⊗L

⊗−q] = ∑suppFj/Fj+1=X[X] = n[X]. �

Applying Lemma 10.5 to the identity in the claim gives the proposition because
if θ∨i ∈X

∗(T ) is the character through which T acts on Vji/Vji+1 then χ(Vj/Vj+1 ⊗

L⊗k−q) = e(θ∨i )χ(L
⊗(k−q)). �

11. Determinant line bundles

11.1. In order to apply Proposition 10.6 to the identity of cycles established in
Proposition 8.3 we need to choose an equivariant line bundle on GrG. To do this
we consider the morphism

Ad ∶ GrG → GrGL(g)

induced by the adjoint representation of G. Then GrGL(g) is equipped with the
“determinantal” line bundle Ldet, defined by the property that its pull-back to
SpecA along a morphism corresponding to (E , ι) ∈ GrGL(g)(A) is given by the
A-module

detA(u
−Ng⊗O A[u]/ι(E)) ⊗A detA(u

−Ng⊗O A[u]/g⊗O A[u])−1

for N sufficiently large that ι(E) ⊂ u−Ng⊗O A[u]. Note this is independent of the
choice of N . Then Ldet is GL(g)-equivariant and is ample in the sense that its
restriction to any closed subscheme in GrGL(g) is ample. Therefore

Lad ∶= Ad∗Ldet

is G-equivariant and also ample.

Lemma 11.2. For λ ∈ X∗(T ) the group T acts on the fibre of Lad over Eλ,i via
the image of λ under the homomorphism

p ∶X∗(T ) →X∗
(T )

given by λ↦ ∑α∨∈R∨⟨α∨, λ⟩α∨.

Proof. This fibre is the rank one O-module

(11.3) detO (u−Ng[u]/Ad(u − πi)
λg[u])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Λ1

⊗detO (u−Ng[u]/g[u])
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Λ2

for sufficiently large N . As an O-module we have

u−Ng[u]/Ad(u − πi)
λg[u] ≅ ⊕

α∨∈R∨

⟨α∨,λ⟩

⊕
n=−N

(u − πi)
ngα∨
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and t ∈ T (O) acts on (u−πi)
ngα∨ by α∨(t). Therefore, t acts on Λ1 by∏α∨∈R α

∨(t)⟨α
∨,λ⟩+N .

Similarly t acts on Λ2 by ∏α∨∈R α
∨(t)N . We conclude that t acts on (11.3) by

∏
α∨∈R

α∨(t)⟨α
∨,λ⟩

= p(λ)(t)

as claimed. �

Proposition 11.4. If µ = (µ1, . . . , µe) with µi ∈X∗(T ) dominant then

[H0
(Mµ ⊗O F,L⊗nad )] = [

e

⊗
i=1

IndGPµi
(p(nµi))] ∈ R(T )

for sufficiently large n ≥ 0.

Proof. Since Lad is an ample line bundle on the flat O-scheme Mµ it follows that

H0
(Mµ ⊗O F,L⊗nad ) =H0

(Mµ,L
⊗n
ad ) ⊗O F

for sufficiently large n. Therefore [H0(Mµ ⊗O F,L⊗nad )] is equal to the image of

[H0(Mµ ⊗O E,L
⊗n
ad )] under the specialisation map from [Jan03, 10.9]. Since this

map sends the class of ⊗e
i=1 IndGPµi

(p(nµi)) viewed as a representation on an E-

vector space onto ⊗e
i=1 IndGPµi

(p(nµi)) viewed as a representation on an F-vector

space the proposition will follow if we can show

[H0
(Mµ ⊗O E,L

⊗n
ad )] = [

e

⊗
i=1

IndGPµi
(p(nµi))] ∈ R(T )

Under the isomorphism GrG⊗OE ≅ (GrG,1 ×O . . . ×O GrG,e) ⊗O E we have Lad =

⊗
e
i=1 p

∗
iLad,i where Lad,i is the restriction of Lad to GrG,i and pi is the i-th projec-

tion. Therefore

Lad∣Mµ⊗OE =
e

⊗
i=1

p∗i (Lad,i∣G/Pµi×OE
)

and so the Kunneth formula [Sta17, 0BED] identifies

H0
(Mµ ⊗O E,L

⊗n
ad ) =

e

⊗
i=1

H0
(G/Pµi ⊗O E,L

⊗n
ad,i)

as G-representations. To finish the proof we just have to show

(11.5) H0
(G/Pµi ,L

⊗n
ad,i) ≅ IndGPµi

(p(nµi))

For this recall (see for example [Jan03, 5.12]) that the global sections of any G-

equivariant line bundle on G/Pµi are G-equivariantly isomorphic IndGPµi
(η) where

η ∈X∗(T ) is the character through which T acts on the fibre over 1 ∈ G/Pµi . Since
1 is mapped onto Eµi,i under the closed immersion G/Pµi → GrG,i we deduce (11.5)
from Lemma 11.2. �

12. Main theorem

For any dominant λ∨ ∈X∗(T ) write

W (λ∨) = IndGB−(λ∨)

for B− the Borel opposite to B. Likewise, for λ ∈ X∗(T ) we make sense of W (λ),

now as a representation of Ĝ. The following is an alternative formulation of Theo-
rem 1.1.
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Theorem 12.1. Assume that G admits a twisting element ρ ∈ X∗(T ) and let
µ = (µ1, . . . , µe) with µi ∈X∗(T ) strictly dominant. If charF > 0 assume also that

e

∑
i=1

⟨α∨, µi⟩ ≤ charF + e − 1

for all positive roots α∨. Then

[Mµ ⊗O F] = ∑mλ[M(λ+ρ,...,ρ)]

as e∣R+∣-dimensional cycles for mλ ∈ Z≥0 determined by the identity

[
e

⊗
i=1

W (µi − ρ)] = ∑
λ

mλ[W (λ)]

in the Grothendieck group of Ĝ-representations.

Proof. We give the proof here using two representation theoretic propositions from
the next section (Propositions 13.2 and 13.4). Proposition 8.3 and Theorem 9.1
imply

[Mµ ⊗O F] = ∑nλ[Mλ̃ ⊗O F]
where the sum suns over dominant λ ≤ µ1 + . . . + µe − eρ, λ̃ = (λ + ρ, ρ, . . . , ρ), and
nλ ∈ Z≥0. We have to show that nλ =mλ. Applying Proposition 10.6 to this identity
with L equal to Lad gives θ∨λ,i ∈X

∗(T ) so that

χ(L⊗nad ∣Mµ⊗OF) −∑
λ

nλ

∑
i=1

e(θ∨λ,i)χ(L
⊗n
ad ∣Mλ̃⊗OF)

is polynomial of degree < e∣R∨
+∣. Since each µi is strictly dominant each Pµi equals

the opposite Borel B− and so

W (p(nµi)) = IndGPµi
(p(nµi))

Therefore Proposition 11.4 gives that
e

∏
i=1

W (p(nµi)) −∑
λ

nλ

∑
i=1

e(θ∨λ,i)W (p(n(λ + ρ)))W (p(nρ))e−1

is polynomial of degree < e∣R∨
+∣. In the next section we prove (see Proposition 13.2)

that
e

∏
i=1

W (p(nµi)) −∑
λ

mλW (p(n(λ + ρ)))W (p(nρ))e−1

is polynomial of degree < e∣R∨
+∣, and so considering the difference gives that

∑
λ

(mλ −
nλ

∑
i=1

e(θ∨λ,i))W (p(n(λ + ρ)))W (p(nρ))e−1

is also polynomial of degree < e∣R∨
+∣. In the next section we also prove (see Propo-

sition 13.4) that if Xλ ∈ R(T ) are such that

∑
λ

XλW (p(n(λ + ρ)))W (p(nρ))e−1

is polynomial of degree < e∣R∨
+∣ then Xλ = 0 for each λ. Therefore

mλ −
nλ

∑
i=1

e(θ∨λ,i) = 0

for each λ. This implies nλ =mλ for each λ which finishes the proof. �
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13. Some representation theory

It remains to prove Proposition 13.2 and Proposition 13.4 which were used in
the proof of Theorem 9.1. For this set ρ∨ = 1

2 ∑α∨∈R∨
+
α∨. Then the Weyl character

formula asserts that for any dominant λ∨ ∈X∗(T )

[W (λ∨)] =
A(λ∨ + ρ∨)

A(ρ∨)

where A(λ∨) ∶= ∑w ∈W (−1)l(w)e(w(λ∨)) and this identity is occurring inside the
ring Z[ 1

2
X∗(T )]. See, for example, [Jan03, 5.10].

Lemma 13.1. If µ ∈X∗(T ) is strictly dominant then

W (nµ∨) − e(ρ∨)
A(nµ∨)

A(ρ∨)
∈ R(T )

is a sequence of effective elements (i.e. Z≥0-linear combinations of the e(α∨)) which
is polynomial in n of degree < ∣R+∣.

Proof. We first reduce to the case where X∗(T ) contains a twisting element ρ∨0 , in
the sense of Definition 2.2. The construction from [BG14, §5.3] produces a central

extension 1→ Gm → G̃→ G→ 1 such that if T̃ ⊂ G̃ is the preimage of T then X∗(T̃ )

contains such a twisting element. Being a central extension, the Weyl group of G̃
relative to T̃ equals W . Therefore, the inclusion

X∗
(T ) →X∗

(T̃ )

maps A(λ∨) onto A(λ̃∨) for λ̃∨ the character of T̃ induced by λ∨. As a result the

lemma holds for G if it holds for G̃
We can therefore assume there exists a twisting element ρ∨0 ∈X∗(T ). Then ρ∨0−ρ

∨

is W -invariant and so the Weyl character formula implies [W (µ∨)] =
A((µ∨+ρ∨0))

A(ρ∨0)
.

Now, for any λ∨ ∈ X∗(T ) write L(λ∨) for the G-equivariant line bundle on G/B−

on which the action of T on the fibre over the identity is given by λ∨. Then
L(ρ∨0) admits a unique global section on which T acts by ρ∨0 , and this induces a
T -equivariant injection

OG/B− ⊗ ρ∨0 ↪ Lρ∨0

Tensoring with Lµ∨−ρ∨0 produces a T -equivariant injection Lµ∨−ρ∨0 ⊗ ρ
∨
0 ↪ Lµ∨ and

taking global sections yields a T -equivariant injection ofW (µ∨−ρ∨0)⊗ρ
∨
0 intoW (µ∨).

In particular,

[W (nµ∨)]−e(ρ∨0)[W (nµ∨−ρ∨0)] = [W (nµ∨)]−e(ρ∨0)
A(nµ∨)

A(ρ∨0)
= [W (nµ∨)]−e(ρ∨)

A(nµ∨)

A(ρ∨)

is an effective element of R(T ) for each n ≥ 0. Since it is effective we can show
the sequence of elements is polynomial of degree < ∣R+∣ by showing that the dif-
ference between the dimensions of W (nµ∨) and W (nµ∨ − ρ∨0) is a polynomial in n
of degree < ∣R+∣. But this follow from the Weyl dimension formula dimW (λ∨) =

∏α∈R+
⟨λ∨+ρ∨0 ,α⟩

⟨ρ∨0 ,α⟩
since it shows both W (nµ∨) and W (nµ∨ − ρ∨0) have dimension the

value at n of a degree ∣R+∣ polynomial with leading term n∣R+
∣
∏α∈R+

⟨µ∨,α⟩
⟨ρ∨0 ,α⟩

. �
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Proposition 13.2. Suppose that X∗(T ) contains a twisting element ρ and consider
strictly dominant µ1, . . . , µe ∈X∗(T ). If

[
e

⊗
i=1

W (µi − ρ)] = ∑
λ

mλ[W (λ)]

in the Grothendieck group of Ĝ-representations then
e

∏
i=1

W (p(nµi)) −∑
λ

mλW (p(n(λ + ρ)))W (p(nρ))e−1

is polynomial of degree < e∣R∨
∗ ∣.

Proof. The Weyl character formula (applied to Ĝ) yields the identity
e

∏
i=1

A(µi)

A(ρ)
= ∑

λ

mλ
A(λ + ρ)

A(ρ)

in R(T̂ ). Multiplying by A(ρ)e gives
e

∏
i=1

A(µi) = ∑
λ

mλA(λ + ρ)A(ρ)e−1

The endomorphism of R(T̂ ) = Z[X∗(T )] induced by multiplication by n on X∗(T )

is W -equivariant and so commutes with the formation of A(λ). Applying this
endomorphism to the previous identity gives

e

∏
i=1

A(nµi) = ∑
λ

mλA(m(λ + ρ))A(nρ)e−1

The homomorphism p ∶ X∗(T ) → X∗(T ) induces a homomorphism R(T ∨) → R(T )

which is again W -equivariant and so also commutes with the formation of A(λ).

Therefore, applying this homomorphism and multiplying by (
e(ρ∨)
A(ρ∨)

)
e

gives

(13.3)
e

∏
i=1

e(ρ∨)A(np(µi))

A(ρ∨)
= ∑

λ

mλ
e(ρ∨)A(np(λ + ρ))

A(ρ∨)

e(ρ∨)A(np(ρ))

A(ρ∨)

e−1

in R(T ). Write

e

∏
i=1

e(ρ∨)A(np(µi))

A(ρ∨)
=

e

∏
i=1

(W (np(µi)) − (W (np(µi)) −
e(ρ∨)A(np(µi))

A(ρ∨)
))

=
e

∏
i=1

(W (np(µi))) +Cµ,n

for Cµ,n ∈ R(T ). Lemma 13.1 ensures that (W (np(µi)) −
e(ρ∨)A(np(µi))

A(ρ∨)
) is poly-

nomial in n of degree < ∣R+∣ and so, since W (np(µi)) has dimension polynomial
in n of degree ∣R∨

+∣, it follows that Cµ = (Cµ,n)n≥0 is polynomial of degree < e∣R∨
+∣.

Similarly, each

e(ρ∨)A(np(λ + ρ))

A(ρ∨)

e(ρ∨)A(np(ρ))

A(ρ∨)

e−1

=W (np(λ + ρ))W (np(ρ))e−1
+Cλ,n

with Cλ = (Cλ,n)n≥0 polynomial of degree < e∣R∨
+∣. Combining these observations

with (13.3) gives that
e

∏
i=1

W (p(nµi)) −∑
λ

mλW (p(n(λ + ρ)))W (p(nρ))e−1
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is polynomial of degree < e∣R∨
+∣ as desired. �

Proposition 13.4. Suppose that for strictly dominant λ∨, µ∨ ∈ X∗(T ) there are
Cλ ∈ R(T ) such that

∑
λ

Cλ∨W (nλ∨)W (nµ∨)e−1

is polynomial of degree < e∣R∨
+∣. Then Cλ = 0 for all λ.

Proof. Since µ∨ is strictly dominant the dimension of W 0(nµ∨) is polynomial in n
of degree ∣R+∣. Therefore, we can assume e = 1. If the proposition does not hold
then we can choose a λ with Cλ∨ ≠ 0 so that Cλ∨0 ≠ 0 implies λ∨0 ≤ λ∨.

Observation. Let Φ,Ψ > 0 be and let S∨ denote the set of simple roots. Then
there exists a degree ∣R∨

+∣ polynomial Q(x) ∈ Q[x] with positive leading term so
that for n ≥ Ψ one has

∑
η∨

dimW (nλ∨)η∨ ≥ Q(n)

where the sum runs over η∨ = nλ∨ −∑α∨∈S∨ lα∨α
∨ with 0 ≤ lα∨ <

n
Ψ
−Φ.

Proof of Observation. The Kostant multiplicity formula [?] asserts that

dimW (nλ∨)η∨ = ∑
w∈W

(−1)l(w)P (w(nλ∨ + ρ∨) − (η∨ + ρ∨))

where P (µ∨) denotes the number of ways in which µ∨ ∈ X∗(T ) can be expressed
as a Z≥0-linear combination of α∨ ∈ R∨

+. We claim P (w(nλ∨ + ρ∨) − (η∨ + ρ∨)) = 0
for w ≠ 1. Since

w(nλ∨ + ρ∨) − (η∨ + ρ∨) = w(nλ∨ + ρ∨) − (nλ∨ + ρ∨) + ∑
α∨∈S∨

lα∨α
∨

the claim follows if, when w(nλ∨ + ρ∨) − (nλ∨ + ρ∨) is expressed as a Z-linear
combination of α∨ ∈ S∨, at least one coefficient is ≤ −n. But this is clear since λ∨ is
dominant (see, for example, [Hum78, 13.2.A]). Therefore the observation is reduced
to producing a polynomial lower bound on

(13.5) ∑
0≤lα∨<

n
Ψ−Φ

P ( ∑
α∨∈S∨

lα∨α
∨
)

of the correct degree. To do this we first claim that

P ( ∑
α∨∈S∨

lα∨α
∨
) ≥ (

1

∣R∨
+∣ − ∣S∨∣

min{lα∨})

∣R∨
+ ∣−∣S

∨
∣

This can be seen by noticing that if 0 ≤ jα∨ ≤ 1
∣R∨

+ ∣−∣S
∨∣

min{lα∨} for α∨ ∈ R∨
+ ∖ S

∨

then there exists iα∨ ≥ 0 for α∨ ∈ S∨ so that

∑
α∨∈S∨

lα∨α
∨
= ∑
α∨∈R∨

+∖S
∨
jα∨α

∨
+ ∑
α∨∈S∨

iα∨α
∨

(indeed every α∨ ∈ R∨
+∖S

∨ can be expressed as a sum of α∨ ∈ S∨ and so∑α∨∈R∨
+∖S

∨ jα∨α
∨

can be expressed as a linear combination of α∨ ∈ S∨ with the α∨-coefficient in the
interval [0,min{lα∨}]). Therefore (13.5) is

≥ ∑
0≤lα<

k
Ψ−Φ

(
1

∣R∨
+∣ − ∣S∨∣

min{lα∨})

∣R∨
+ ∣−∣S

∨
∣
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which is easily seen to be a polynomial in n of degree (∣R∨
+∣−∣S

∨∣)+∣S∨∣ with positive
leading term. �

We return to the proof of the proposition. Choose Ψ,Φ > 0 (we will be more
specific later). If e(θ∨) appears in Cλ∨ with non-zero multiplicity then e(θ∨ +
nλ∨ − ∑α∨ lα∨α

∨) appears in Cλ∨W (nλ∨) for any n and any 0 ≤ lα∨ <
n
Φ
−Φ. The

observation above implies that for n >> 0 at least one of these e(θ∨+nλ∨−∑α∨ lα∨α
∨)

must cancel in∑λ∨0 Cλ
∨
0
W (nλ∨0), since otherwise we contradict that assumption that

∑λ∨0
Cλ∨0W (nλ∨0) is polynomial in n of degree < ∣R∨

+∣. Therefore, for each sufficiently

large n there exists 0 ≤ lα∨ <
n
Ψ
−Φ and e(θ∨0 ) appearing with non-zero multiplicity

in Cλ∨0 for λ∨0 ≠ λ∨ so that e(θ∨ + nλ∨ −∑α∨ lα∨α
∨) appears in e(θ∨0 )W (nλ∨0). This

implies
nλ∨ −∑

α∨
lα∨α

∨
≤ θ∨0 − θ

∨
+ nλ∨0

Choose β∨ ∈ X∗(T ) so that α∨ ∈ S∨ and the β∨ form a basis of X∗(T ) ⊗Z Q. If
θ∨0 − θ

∨ = ∑α∨∈S∨ nα∨α
∨ +∑β∨ nβ∨β

∨ then

n(λ∨0 − λ
∨
) = ∑

α∨∈S∨
mα∨,nα

∨
+∑
β∨
nβ∨β

∨

with mα∨,n ≥ nα∨ − lα∨ . Since the nβ∨ are bounded above independently of n (as
there are only finitely many possible θ∨0 ) it follows that each nβ∨ = 0. If Φ ≥ −nα∨

for every α∨ then we also have mα∨,n ≥ −
n
Ψ

. Therefore

λ∨0 − λ
∨
= ∑
α∨∈S∨

mα∨α
∨

with mα∨ ≥ −
1
Ψ

for all Ψ > 0. We conclude that each mα∨ ≥ 0 and so λ∨0 ≥ λ∨. Since
this contradicts the maximality of λ∨ we conclude Cλ∨ = 0 for every λ∨. �
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Part 2. Cycle identities in moduli spaces of crystalline representations

14. Notation

14.1. For the second part of this paper we fix the following data:

● Let K/Qp be a finite extension with residue field k and ramification degree
e over Qp. Let C denote a completed algebraic closure of K with ring of

integers OC and fix a compatible system π1/p∞ of p-th power roots of a
uniformiser π ∈K.

● Fix another extension E of Qp, with ring of integers O and residue field F,
and an embedding k ↪ F which we extend to an embedding W (k) → O.
Enlarging E if necessary we assume that E contains a Galois closure of K
so that W (k) ↪ O extends to e distinct embeddings, which we index as
κ1, . . . , κe.

● Let G be a split reductive group over O. Unlike in Part 1, we assume
additionally that G has connected fibres. We set

G̃ = ResW (k)⊗ZpO/O (G⊗Zp W (k))

(thus G̃(A) = G(W (k) ⊗Zp A) for any O-algebra A). Since W (k) ⊗Zp O =

∏
f
i=1O⊗W (k),ϕiW (k), for f = [k ∶ Fp] and ϕ the lifting to W (k) of the p-th

power map on k, we can also write

G̃ ≅

f

∏
i=1

G⊗W (k),ϕi W (k)

We apply the constructions from Definition 4.1 to G̃ and with πi ∶= κi(π)
to obtain the ind-scheme GrG̃. Notice we also have:

GrG̃ ≅

f

∏
i=1

GrG⊗W (k),ϕiW (k)

Maintaining the notation from Part 1, we write E(u) = ∏
e
i=1(u−πi). Notice

this coincides with the minimal polynomial of π in W (k)[u].
● For any p-adically complete O-algebra A we set SA ∶= (W (k) ⊗Zp A)[[u]]

and equip this ring with the A-linear Frobenius ϕ sending u↦ up and lifting
the p-th power map on k. We frequently identify

G(SA) = G̃(A[[u]]) =
f

∏
i=1

G(A[[u]])

and notice that the endomorphism of G(SA) induced by ϕ on SA identifies

with the automorphism of ∏
f
i=1G(A[[u]]) given by (gi)i ↦ (ϕ′(gi))i+1

where the i are viewed modulo f and ϕ′ is the automorphism of G(A[[u]])
induced by the A-linear endomorphism of A[[u]] given by u↦ up

● For any p-adically complete O-algebra we also consider

Ainf,A ∶= lim
←Ð
a

lim
←Ð
i

(W (OC♭)/pa ⊗Zp A)/ui

where OC♭ = lim
←Ðx↦xp

OC/p and u = [(π,π1/p, π1/p2

, . . .)] ∈ W (OC♭). We

view Ainf,A as an SA-algebra via u and note that the lift of Frobenius on
W (OC♭) induces a Frobenius ϕ on Ainf,A which is compatible with that
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on SA. The natural GK-action on OC also induces a continuous (for the
(u, p)-adic topology) GK-action on Ainf,A commuting with ϕ. We also have

W (C♭
)A ∶= lim

←Ð
a

Ainf,A[
1
u
]/pa

If A is topologically of finite type (i.e. A ⊗Zp Fp is of finite type) then
SA → Ainf,A is faithfully flat (in particular injective) [EG23, 2.2.13]. We
only consider the Ainf,A and W (C♭)A for such A.

● Fix a compatible system ε = (ε1, ε2, . . .) of primitive p-th power roots of
unity in C. Then we can view ε ∈ OC♭ and we set µ = [ε] − 1.

● A Hodge type µ for K is a tuple of (conjugacy classes) of cocharacters of G,

indexed by the embeddings of K into Qp (although we always ignore that
we are considering these cocharacters up to conjugacy). Since every such
embedding factors through E we can (and typically do) interpret a Hodge

type as an e-tuple of cocharacters of G̃.

15. Moduli of Breuil–Kisin modules

15.1. For any p-adically complete O-algebra A a G-Breuil–Kisin module (usually
we omit the G-) over A is a G-torsor M on SpecSA equipped with an isomorphism

ϕM ∶ ϕ∗M[ 1
E(u)

]
∼
Ð→M[ 1

E(u)
]

We refer to ϕM as the Frobenius on M and frequently write ϕ instead of ϕM when
there is no risk of confusion.

● Let ZG(A) be the category of Breuil–Kisin modules over A whose mor-
phisms are isomorphisms of G-torsors compatible with the Frobenii.

● Let Z̃G(A) be the category of pairs (M, ι) with M a Breuil–Kisin module
over A and ι a trivialisation of M over SpecSA. Morphisms are isomor-
phisms of G-torsors compatible with the Frobenii and commuting with the
trivialisation.

Any homomorphism of p-adically complete O-algebras A→ B induces a homomor-
phism SA → SB and pull back induces functors ZG(B) → ZG(A) and Z̃NG (B) →

Z̃NG (A) making ZG and Z̃G into categories fibred over SpfO. In the obvious way
these constructions are functorial in G.

Remark 15.2. If (M, ι) ∈ Z̃NG (A) then we obtain an element CM,ι ∈ G(SA[
1

E(u)
])

giving the isomorphism

ϕ∗E0 ϕ∗ι−1

ÐÐÐ→ ϕ∗M[ 1
E(u)

]
ϕM
ÐÐ→M[ 1

E(u)
]
ι
Ð→ E

0

We say that CM,ι represents the Frobenius on M relative to ι.

Construction 15.3. We have morphisms

Z̃G

ZG GrG̃

Ψ

Γ

where Γ forgets the choice of trivialisation and

Ψ(M, ι) ∶= (M, ϕ∗ι ○ ϕ−1
M)
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Here (M, ϕ∗ι ○ ϕ−1
M) is viewed as a pair consisting of a G̃-torsor on SpecA[[u]]

and a trivialisation after inverting E(u), and determines as an A-valued point of
GrG̃ via Lemma 4.3; since A is p-adically complete the E(u)-adic completion of

A[u] coincides with A[[u]]. Concretely, if CM,ι ∈ G(SA[
1

E(u)
]) = G̃(A[[u]][ 1

E(u)
])

represents the Frobenius on M relative to ι, then Ψ(M, ι) = (E0,C−1
M,ι). It is easy

to see that Γ and Ψ are respectively torsors for the following two actions of the
group scheme1 L+G over O given by A↦ G(SA) on Z̃G:

g ⋅ϕ (M, ι) = (M, g ○ ι), g ⋅trans (M, ι) = (Mg, ι)

for Mg ∈ ZG(A) the Breuil–Kisin with underlying G-torsor M and with Frobenius
represented (in the sense of Remark 15.2) by gCM,ι.

15.4. For an alternative viewpoint on Construction 15.3 let LG denote the group
ind-scheme over O given by A ↦ G(SA[

1
E(u)

]). Then (M, ι) ↦ CM,ι gives an

isomorphism Z̃G ≅ LG (or rather the p-adic completion of LG). Under this iso-
morphism the ⋅ϕ-action identifies with the action of L+G via ϕ-conjugation C ↦
g−1Cϕ(g) while the ⋅trans-action identities with left multiplication. Therefore, the
diagram in Construction 15.3 identifies with

LG

[LG/ϕL
+G] [LG/L+G] ≅ GrG̃

C↦C−1

where LG/ϕL
+G indicates the quotient by ϕ-conjugation and LG/L+G indicates

the quotient by right multiplication.

An issue with Z̃G is that it is not of finite type over O. To address this we
will consider the certain quotients. These ideas go back to [PR09, 2.2]. See also
[Lin23, §3.3] which does essentially the same as that done here.

Definition 15.5. For N ≥ 1 let UG,N ⊂ L+G denote the subgroup with A-valued
points

ker (G(SA) → G(SA/u
N
))

and set GG,N = L+G/UG,N .

Proposition 15.6. Let X ⊂ GrG̃ be a closed subscheme on which p is nilpotent.
Then, for N ≥ N0 (with N0 depending on X),

[Z̃G ×GrG̃
X/ϕUG,N ] ≅ [Z̃G ×GrG̃

X/UG,N ]

(the quotient on the left being by the ⋅ϕ action and that on the right action by the
⋅trans-action). In particular, the map Ψ induces a morphism

ΨN ∶ [Z̃G ×GrG̃
X/ϕUG,N ] →X

which is a torsor for the group scheme GG,N .

Proof. The isomorphism [Z̃G×GrG̃
X/ϕUG,N ] ≅ [Z̃G×GrG̃

X/UG,N ] follows from the

concrete assertion that there existsN ≥ 1 so that for any C ∈ LG(A) = G(SA[
1

E(u)
])

representing an A-valued point in X one has:

● If g0 ∈ UG,N(A) then g−1
0 Cϕ(g0) = gC for a unique g ∈ UG,N(A).

1Note that this is not the same group scheme as that defined in Notation 4.7.
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● If g ∈ UG,N(A) then there exists a unique g0 ∈ UG,N(A) for which g−1
0 Cϕ(g0) =

gC.

When G = GLn this is shown in [Bar21, 9.6] (following arguments in [PR09, 2.2]).
For general G one chooses a faithful representation into GLn. The first point then
follows immediately from the statement for GLn. For the second point one recalls
that, in the case of GLn, one constructs g0 ∈ UGLn,N(A) = 1 + uN Mat(SA) as the
limit of a u-adically converging sequence of matrices in UGLn,N(A). If g and C are
in G(SA[

1
E(u)

]) then g0 will be the limit of a convergent sequence in G(SA[
1

E(u)
])∩

UGLn,N(A) = UG,N(A). Thus g0 ∈ UG,N(A) also, and the proposition follows. �

Corollary 15.7. Let µ be a Hodge type and assume that for each κ0 ∶ k → F
e

∑
i=1

⟨α∨, µi⟩ ≤ p

for all roots α∨. Then there exists a closed subfunctor ZG,µ,F of ZG ⊗O F rep-
resented by an algebraic stack, of finite type over SpecF, with the property that
M ∈ ZG,µ,F(A) if and only if

● For any A-algebra A′ and any trivialisation ι of M⊗AA
′ one has Ψ(M⊗A

A′, ι) ∈Mµ ⊗O F.

Furthermore, dimZG,µ,F = ∑κ∶K→E dim G̃/Pµκ .

Proof. Applying Proposition 15.6 withX =Mµ⊗OF shows that [Z̃G×GrG̃
X/ϕUG,N ]

is, for large enough N , a finite type F-scheme of dimension

dimGG,N + ∑
κ∶K→E

dim G̃/Pµκ

To construct ZG,µ,F we descend this closed subscheme along the morphism ΨN .

For this we need that [Z̃G ×GrG̃
X/ϕUG,N ] is stable under the g ⋅ϕ (M, ι) action of

GG,N . Since CM,g○ι = g
−1CM,ιϕ(g) this stability is equivalent to asking that the

A-valued points of each Mµ ⊗O F ⊂ GrG̃ are stable under the action of G̃(A[up]).

For this notice that if ∑
e
i=1⟨α

∨, µi⟩ ≤ p then g ∈ G̃(A[up]) acts on YG,≤µ ⊗O F as
g0 ∶= g modulo up (this is clear from the definition). Since Mµ ⊗O F ⊂ YG,≤µ ⊗O F
(see Proposition 5.9) the claim reduces to the claim that Mµ ⊗O F is stable under
the action of G, and this is immediate. �

Remark 15.8. We do not know whether Corollary 15.7 remains true with the bound

∑
e
i=1⟨α

∨, µi⟩ ≤ p replaced with the more natural bound ∑
e
i=1⟨α

∨, µi⟩ ≤ e + p − 1.

Corollary 15.9. Let H ⊂ G be an embedding of reductive groups. Then the induced
morphism

ZH → ZG

is representable by schemes, and of finite type.

Proof. The well-known fact that BunH → BunG is representable by schemes implies
that, for any A-valued point of ZG, ZH ×ZG SpecA is representable by a closed
subscheme of an SA-scheme. To check this scheme is of finite type over A we can
assume that A is a Noetherian O-algebra A on which p is nilpotent. After replacing
A by an fppf-cover we can factor SpecA → ZG through [Z̃G ×GrG̃

X/ϕUG,N ] for

sufficient large N and some X ⊂ GrG̃. We can also assume X is actually a closed
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subscheme of GrH̃ . Writing Z̃NG,X ∶= [Z̃G ×GrG̃
X/ϕUG,N ] we then have a sequence

of morphisms

Z̃NH,X ×Z̃N
G,X

×SpecA→ ZH ×ZG SpecA→ SpecA

The composite is of finite type since the same is true of [Z̃H ×GrH̃
X/ϕUH,N ] →

[Z̃G ×GrG̃
X/ϕUG,N ]) (in fact this is a closed immersion). As A is Noetherian it

follows that ZH ×ZG SpecA is of finite type also. �

Remark 15.10. For an embedding H ⊂ G the analogous morphism between moduli
spaces of shtuka’s in representable by schemes, and additionally finite and unram-
ified [Bre19,Yun22]. One expects that the same is true for ZH → ZG, and it seems
that the arguments of loc. cit. will go through largely unchanged. Since we do not
need this additional level of control we do not try to give any details.

16. Crystalline Breuil–Kisin modules

Here we discuss the link between Breuil–Kisin modules and crystalline represen-
tations, by extending the discussion from [Bar21, §10] from GLn to G.

Definition 16.1. Let A be a p-adically complete O-algebra topologically of finite
type and recall the SA-algebra Ainf,A which is equipped with a Frobenius extending
that on SA and a continuous action of GK commuting with the Frobenius. By an
action of GK-action on M ∈ ZG(A) we mean a collection of morphisms in ZG(A)

xσ ∶M⊗SA,σ Ainf,A
∼
Ð→M⊗SA Ainf,A, σ ∈ GK

satisfying xστ = xσ ○ σ
∗xτ and x1 = id. Such a GK-action is crystalline if, for each

representation χ ∶ G → GLn over O, the induced GK-action satisfies (recall the
element µ = [ε] − 1 ∈ Ainf,A)

σ(m) −m ∈M(ρ)χ ⊗SA uϕ
−1

(µ)Ainf,A, σ∞(m) −m = 0

for all m ∈Mχ and all σ ∈ GK , σ∞ ∈ GK∞ . Write YG(A) for the groupoid consisting
of M ∈ ZG(A) equipped with a crystalline GK-action.

We say that a continuous representation ρ ∶ GK → G(A) is crystalline if χ ○ ρ is
crystalline in the sense of [Fon94b] for every representation χ of G (equivalent for
a single faithful χ).

Theorem 16.2. Let A be a finite flat O-algebra. Then to each (M, x) ∈ YG(A)

there exists is a uniquely determined (up to isomorphism) crystalline representation
ρ ∶ GK → G(A) together with a ϕ,GK-equivariant identification

M⊗SA W (C♭
)A ≅ ρ⊗AW (C♭

)A

of G-torsors. If A is a discrete valuation ring then every crystalline ρ arises in this
way from a unique (up to isomorphism) such (M, x).

Proof. The first part follows immediately from the assertion for GLn (see [Bar20,
2.1.12]). The second part does not immediately follow from the case of GLn because
the construction in [Kis06] of M from any ρ ∶ GK → GLn(A), while functorial and
tensor compatible, is not exact. In particular, the construction cannot, a priori, be
used to associate the G-torsor M to ρ ∶ GK → G(A).

Fortunately, this issue can easily be addressed because Kisin’s construction
actually produces an exact tensor functor sending a crystalline representations
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ρ ∶ GK → GLn onto a vector bundle M(ρ)∗ on the D∗ = SpecSO ∖ {u = p = 0}
equipped with a Frobenius isomorphism after inverting E(u). As explained in e.g.
[Lev15, 2.3.6] such an M(ρ)∗ can be interpreted as a pair of projective ϕ-modules
respectively over SO[

1
p
] and the p-adic completion OE,A of SA[

1
u
], together with a

comparison isomorphism over OE,A[
1
p
]. The former is constructed in [Kis06, 1.3.15]

(and we look into this construction in more detail in Section 17) and the latter is
the etale ϕ-module associated to ρ as in e.g. [Kis06, §2.1]. Then M(ρ) is obtained
using the equivalence between vector bundles on D∗ and SpecSO [Ans22, 1.2] (this
extension is where exactness is lost).

Since ρ ↦ M(ρ)∗ is exact and tensor compatible applying the construction to
a crystalline representation valued in G(O) produces a G-torsor on D∗ equipped
with a Frobenius after inverting E(u). Then [Ans22, 1.2] can be applied again to
extend this G-torsor to a G-Breuil–Kisin module, producing the M associated to
ρ. �

We say that a crystalline representation ρ ∶ GK → G(A) has Hodge type µ if χ○ρ
has Hodge type χ ○ µ for any representation χ ∶ G→ GLn of G.

Proposition 16.3. For each Hodge type µ there exists a closed subfunctor Y µG of
YG which is represented by an O-flat p-adic algebraic formal stack (in the sense
[EG23, A7]) Y µG of topologically finite type over O and is uniquely determined by
the property that its groupoid of A-valued points, for any finite flat O-algebra A, is
canonically equivalent to the full subcategory Y µG (A) of YG(A) consisting of those
M for which the associated crystalline representation ρ as in Theorem 16.2 has
Hodge type µ.

Proof. When G = GLn this is [Bar21, 10.7]. For general G one chooses a faithful
representation χ ∶ G→ GLn. Corollary 15.9 shows that the projection

Y χ○µGLn
×ZGLn

ZG → Y χ○µGLn

is representable by finite type schemes and so Y χ○µGLn
×ZGLn

ZG is a p-adic algebraic

formal stack of topologically finite type over O. One takes Y µG as its O-flat closure
of Y χ○µGLn

×ZGLn
ZG (in the sense of [EG23, p.230]). �

We finish this section by explaining the relationship between Y µG andG-crystalline
deformation rings. Fix a continuous homomorphism ρ ∶ GK → G(F) and let R◻

ρ de-
note the corresponding framed deformation ring over O, i.e. the unique complete
local Noetherian O-algebra with residue field F equipped with a continuous homo-
morphism ρuniv ∶ GK → G(R◻

ρ ) satisfying ρuniv ⊗R◻
ρ
F = ρ and universal amongst all

such rings with this property.

Theorem 16.4. For each Hodge type µ there exists a unique O-flat reduced quotient
R◻,cr,µ
ρ of R◻

ρ with the property that a homomorphism R◻
ρ → A with A a finite flat

O-algebra factors through R◻,cr,µ
ρ if and only if the composite

GK
ρuniv

ÐÐÐ→ G(R◻
ρ ) → G(A)

is crystalline of Hodge type µ. Furthermore,

dimOR
◻,cr,µ
ρ = dimOG +

e

∑
i=1

dim Ĝ/Pµi
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Proof. This is a special case of the main result of [Kis08] when G = GLn and of
[Bal12] for general G. See also [BG19, Theorem A]. �

Construction 16.5. Let A be any complete local Noetherian O-algebra with finite
residue field and let ρ ∶ GK → G(A) be a continuous representation. Consider the
functor which sends any p-adically complete A-algebra O which is topologically of
finite type over O on the set tuples (M, x,α, β) for which (M, x) ∈ Y µG (A′), α ∶ A→
B is a continuous homomorphism, and β is a ϕ,GK-equivariant identification

M⊗SA′ W (C♭
)A′ ≅ ρ⊗AW (C♭

)A′

After choosing a faithful representation it follows from e.g. [EG23, 4.5.26] that this
functor is represented by the mA-adic completion of a projective A-scheme whose O-
flat closure we denote by Lµρ . Then Lµρ has the property that the structure morphism
Lµρ → SpecA becomes a closed immersion after inverting p. The scheme theoretic
image of this morphism corresponds to a quotient Acr,µ of A with the property that
a homomorphism A → B into a finite flat O-algebra B factors through Lµρ if and

only if GK
ρ
Ð→ G(A) → G(B) is crystalline of Hodge type µ.

For a given continuous ρ ∶ GK → G(F) set Lcr,µ
ρ = Lρuniv for ρuniv ∶ GK → G(R◻

ρ )

the universal deformation of ρ. Then Construction 16.5 shows that R◻,cr,µ
ρ is the

scheme theoretic image of Lcr,µ
ρ .

Lemma 16.6. For any continuous homomorphism ρ ∶ GK → G(F) there is a for-
mally smooth morphism

L
cr,µ
ρ ⊗O F→ Y µG ⊗O F

of relative dimension dimOG which induces, for any p-adically complete O-algebra
of topologically finite type over O, the functor (M, x,α, β) ↦ (M, x).

Proof. The lifting property describing formal smoothness can be checked on p-
adically complete O-algebras factoring through R◻,cr,µ

ρ , and so we can assume the

ring is a complete local Noetherian ring with finite residue field. The lifting can
therefore be deduced from the main result of [Dee01]. This lifting is unique up to
G-conjugation which shows that the relative dimension is as claimed. �

Corollary 16.7. (1) Let A be an Artin local O-algebra and (M, x) ∈ Y µG (A).
Then there exists a finite flat O-algebra A○, with a morphism A○ → A, and
(M○, x○) ∈ Y µG (A○) whose image under Y µG (A○) → Y µG (A) is (M, x).

(2) Y µG ⊗O F has dimension ∑
e
i=1 dim G̃/Pµi .

Proof. Using Lemma 16.6 this follows from analogous assertions for Lµρ , of which
(1) is a consequence of [Bar20, 4.1.2] and (2) is a consequence of the dimension
formula for R◻,cr,µ

ρ . �

17. The shape of Frobenius

For the results of this section it is necessary to assume that the compatible
system π1/p∞ is chosen so that K∞ ∩K(µp∞) = K whenever µp

∞
is a compatible

system of primitive p-th power roots of unity. When p > 2 this is automatic and,
while not automatic when p = 2, it follows from [Wan22] that π can be chosen so
that this is the case.
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Theorem 17.1. Assume that µ is a Hodge type satisfying
e

∑
i=1

⟨α∨, µi⟩ ≤
p − 1

ν
+ 1, ν = maxi≠j{v(πi − πj)}

where v denotes the valuation on O with v(πi) = 1 for one (equivalently all) i.
Then the morphism Y µG ⊗O F→ ZG which forgets the crystalline GK-action factors
through ZG,µ,F.

Remark 17.2. (1) If p does not divide e, i.e. if K is tamely ramified over Qp,
then ν = 1. To see this recall E(u) = ∏

e
i=1(u − πi) and so

d

du
E(u) =

e

∑
i=1

∏
j≠i

(u − πj)

Therefore d
du
E(u)∣u=πi = ∏j≠i(πi − πj) has valuation ∑j≠i v(πj − πi). On

the other hand, since E(u) ≡ ue modulo p we have

d

du
E(u)∣u=πi = eπ

e−1
i modulo p

and so, if e is prime to p, then e − 1 = ∑j≠i v(πj − πi). As v(πj − πi) ≥ 1 we
must have each v(πj − πi) = 1.

(2) If each µi is strictly dominant then ∑
e
i=1⟨α

∨, µi⟩ ≥ e and so for the bound
in Theorem 17.3 to hold we must have

e ≤
p − 1

ν
+ 1

In particular, (1) implies ν = 1. Therefore, the bound in Theorem 17.3 is
equivalent to asking that

e

∑
i=1

⟨α∨, µi⟩ ≤ p

for each root α∨.

In order to prove Theorem 17.1 it suffices to show such a factorisation on the
level of Artin local F-algebras (see for example [Bar21, 15.2]). Using the lifting
result of Corollary 16.7 we therefore reduce Theorem 17.1 to the following:

Theorem 17.3. Let A be a finite flat O-algebra and suppose that (M(ρ), x) ∈

Y µG (A) corresponds as in Theorem 16.2 to a crystalline representation ρ of Hodge

type µ. Assume that, for all roots α∨ of G̃,
e

∑
i=1

⟨α∨, µi⟩ ≤
p − 1

ν
+ 1, ν = maxi≠j{v(πi − πj)}

where v denotes the valuation on O with v(πi) = 1 for one (equivalently all) i. Then

Ψ(M(ρ), ι) ⊗O F ∈Mµ(A⊗O F)

for any trivialisation ι of M(ρ)

The rest of this section will be devoted to the proof of the theorem. The first
step is to realise the Hodge type µ in terms of M(ρ). We will see that this is easy
after inverting p.

17.4. We begin by introducing some power series rings in which p had been inverted:
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● Let ŜA denote the E(u)-adic completion of SA[
1
p
]. Notice that since E(u)

generates the kernel of the surjection ŜA → K ⊗Zp A sending u ↦ π this

surjection has a unique splitting, via which we view ŜA as a K ⊗Zp A-
module.

● Let ŜA,i denote the (u−πi)-adic completion of SA[
1
p
] and identify this ring

with (K0⊗ZpA)[[u−πi]]. As in 4.4 we have an isomorphism ŜA ≅ ∏
e
i=1 ŜA,i

and this allows us to consider the Taylor expansion around u = πi of any
f ∈ ŜA: it is the power series

∑
n≥0

fn(u − πi)
n, fn ∈K0 ⊗Zp A

corresponding to the image of f in ŜA,i.
● Let Orig denote the subring of K0[[u]] consisting of power series convergent

on the open unit disk and set Orig
A = A ⊗Zp O

rig whenever A is a finite O-

algebra. We set λ = ∏
∞
i=0

ϕn(E(u))
E(0)

∈ Orig and we view Orig
A [ 1

ϕ(λ)
] as an

ŜA-algebra by sending an element onto its Taylor series around u = π. We
write ϕ for the unique extension of ϕ on SA to Orig

A .

Notice that the composite Orig
A [ 1

ϕ(λ)
] → ŜA,i is injective for each i and so we

frequently abuse notation by writing

f = ∑
n≥0

fn(u − πi)
n

whenever f ∈ O
rig
A [ 1

ϕ(λ)
].

17.5. Next we recall some aspects of the construction of M(ρ)[ 1
p
] from [Kis06] when

G = GLn. First, the filtered ϕ-module D(ρ) associated to ρ[ 1
p
] is used to construct

a projective Orig
A = Orig ⊗Zp A-module M(ρ) together with an isomorphism

ϕ∗M(ρ)[ 1
λ
]

∼
Ð→M(ρ)[ 1

λ
]

See [Kis06, §1.2]. There are two key consequences of this construction:

● There exists a ϕ-equivariant isomorphism

ξ ∶ ϕ∗M(ρ)[ 1
ϕ(λ)

] ≅D(ρ) ⊗K0⊗ZpA
O

rig
A [ 1

ϕ(λ)
]

See [Kis06, 1.2.6].

● After extending scalars to ŜA we obtain isomorphisms ϕ∗M(ρ)⊗
O

rig
A

ŜA ≅

D(ρ) ⊗K0⊗ZpA
ŜA ≅D(ρ)K ⊗K⊗ZpA

ŜA under which

(17.6) M(ρ) ⊗
O

rig
A

ŜA = ∑
i∈Z

Fili(D(ρ)K) ⊗K⊗ZpA
E(u)−iŜA

See [Kis06, 1.2.1].

Using that D(ρ) comes from a crystalline representation (i.e. is an admissible
filtered ϕ-module) Kisin then shows [Kis06, 1.3.8] thatM(ρ) descends uniquely to
the projective SA[

1
p
]-module M(ρ)[ 1

p
].

All the constructions from 17.5 are functorial in ρ, and compatible with exact
sequences and tensor products. Therefore, the Tannakian formalism ensures that
the observations in 17.5 remain valid (after interpreting (17.6) as in 4.10) when ρ
is valued in a general G. As a consequence we deduce:
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Corollary 17.7. For any trivialisation β of D(ρ) over SpecK0 ⊗Zp A, the pair

(M(ρ) ⊗SA ŜA, β ○ ξ ○ ϕ
−1
M)

consisting of a G-torsor on Spec ŜA and a trivialisation after inverting E(u), de-
fines an A[ 1

p
]-valued point of Mµ ⊂ GrG̃. Equivalently, if Xξ,β denotes the auto-

morphism

E
0 ϕ∗ι−1

ÐÐÐ→ ϕ∗M(ρ) ⊗SA O
rig
A [ 1

ϕ(λ)
]
ξ
Ð→D(ρ) ⊗K0⊗ZpA

O
rig
A [ 1

ϕ(λ)
]
β
Ð→ E

0

of the trivial G-torsor then

Xξ,β ⋅Ψ(M(ρ), ι)[ 1
p
] ∈Mµ(A[ 1

p
])

This requires no bound on the Hodge type µ.

In order to use Corollary 17.7 to prove Theorem 17.3 we need to control the
denominators appearing in Xξ,β . Following ideas of [GLS14] we do this by first
deriving some kind of intergrality of a differential operator associated to Xξ,β . Set

Smax = W (k)[[u, u
e

p
]] ∩ Orig[ 1

λ
] and Smax,A = Smax ⊗Zp A for any finite O-algebra

A.

Proposition 17.8. Assume G = GLn and define a differential operator N∇ on

ϕ∗M(ρ)[ 1
ϕ(λ)

] ≅ D(ρ) ⊗K0⊗ZpA
O

rig
A [ 1

ϕ(λ)
] over ∂ ∶= u d

du
by setting N∇(d) = 0 for

d ∈D(ρ). The assumption that K∞∩K(µp∞) =K ensures the matrix of N∇ relative
to the trivialisation ϕ∗ι of ϕ∗M(ρ)[ 1

ϕ(λ)
] has entries in

upϕ(Smax,A)

Again this requires no bound on the Hodge type µ.

Proof. The proof will be given in Section 20 below. The essential idea is to relate
N∇ and the GK-action on M⊗SAAinf,A after basechanging to an appropriate period
ring, and exploit the integrality of the GK-action. �

Remark 17.9. What is proved in [GLS14, 4.7] (when p > 2) and [Wan22, 4.1] (when

p = 2 and π is chosen so that K∞ ∩K(µp
∞
) = K) is that the entries of the matrix

representing N∇ are contained in

(17.10) up (W (k)[[up, u
ep

p
]][ 1

p
] ∩ S) ⊗Zp A

where S denotes the p-adic completion of the divided power envelope of W (k)[u]
with respect to the ideal generated by E(u). This is slightly weaker than Proposi-
tion 17.8 (though for the purposes of this paper it makes no difference because the
calculations in the first paragraph of Corollary 17.11 below also go through using
(17.10), see [GLS15, 2.3.9]). We have stated the stronger result here because it may
be useful when considering Hodge types beyond the bounds imposed in this paper.

Corollary 17.11. Continue to assume G = GLn and fix a trivialisation β of D(ρ)
over SpecK0 ⊗Zp A. We then view the automorphism Xξ,β from Corollary 17.7 as
a matrix and, as in 17.4, write its Taylor expansion around u = πi as

Xξ,β = ∑
n≥0

Xi,n(u − πi)
n

Then
X−1
i,0Xi,n ∈ Mat(πp−ni W (k) ⊗Zp A)

for 1 ≤ n ≤ p − 1.
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Proof. Let e = (e1, . . . , en) denote the standard basis of E0. Then ξ(ϕ∗ι−1(e)) =

β−1(e)Xξ,β . We can also write

N∇(ϕ
∗ι−1

(e)) = ϕ∗ι−1
(e)N

and Proposition 17.8 ensures that the matrix N has entries in upϕ(Smax,A). There-
fore,

N = ∑
n≥1

N ′
n

πn−1
i

upn

for matrices N ′
m with entries in W (k) ⊗Zp A. If the Taylor expansion of N around

u = πi is ∑m≥0Nm(u − πi)
m then

Nm =
1

m!
(
d

du
)

m

(N)∣u=πi = ∑
n≥1

(
pn

m
)N ′

nπ
(p−1)n−m+1
i

for m ≥ 0. Therefore N0 ∈ π
p
i Mat(W (k)⊗ZpA) and Nm ∈ πp+e−mi Mat(W (k)⊗ZpA)

for m = 1, . . . , p − 1.
By definition we have N∇(ξ

−1 ○ β−1(e)) = 0 and so, recalling that ∂ = u d
du

, we
have

ϕ∗ι−1
(e)N = N∇(ϕ

∗ι−1
(e))

= N∇(ξ
−1
○ β−1

(e)Xξ,β)

= ξ−1
○ β−1

(e)∂(Xξ,β)

= ϕ∗ι−1
(e)X−1

ξ,β∂(Xξ,β)

In other words, ∂(Xξ,β) =Xξ,βN . In terms of Taylor expansions around u = πi this
gives the recurrence nXi,n + πi(n + 1)Xi,n+1 = ∑

n
j=0Xi,n−jNj . Multiplying on the

left by X−1
i,0 gives

nX−1
i,0Xi,n + πi(n + 1)X−1

i,0Xi,n+1 =
n

∑
j=0

X−1
i,0Xi,n−jNj

for all n ≥ 0. The corollary then follows by an easy induction, using the divisibility
of the Nj from the first paragraph. �

Proof of Theorem 17.3 when G = GLn. Recall that if β is a trivialisation of D(ρ)
then

Xξ,βΨ(M(ρ), ι)[ 1
p
] ∈Mµ(A[ 1

p
])

As in Corollary 17.11 we view Xξ,β as a matrix and, for each 1 ≤ i ≤ e, we have
Taylor expansions

Xξ,β = ∑
n≥0

Xi,n(u − πi)
n, Xi,n ∈ Mat(K0 ⊗Zp A)

around u = πi. Let g ∈ G(ŜA) ≅ ∏
e
i=1G(ŜA,i) be such that its i-th component

equals Xi,0 ∈ G(K0 ⊗Zp A). Under the isomorphism GrG̃[ 1
p
] ≅ GrG̃,1[

1
p
] × . . . ×

GrG̃,e[
1
p
] the element g acts on the i-th factor by multiplication by Xi,0 and so g

stabilises Mµ[
1
p
]. Thus,

X̃Ψ(M(ρ), ι)[ 1
p
] ∈Mµ(A[ 1

p
])

for X̃ = g−1Xξ,β . For 1 ≤ i ≤ e the Taylor expansion of X̃ around u = πi is

∑
n≥0

X̃i,n(u − πi)
n, X̃i,n =X

−1
i,0Xi,n
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and so Corollary 17.11 ensures X̃i,n ∈ πp−nMat(W (k) ⊗Zp A) for 1 ≤ n ≤ p − 1.
Applying Lemma 17.12 below with

ni = max
α∨

{⟨α∨, µi⟩}

(the maximum taken over all roots α∨ of G̃) shows that the image of X̃ modulo

∏
e
i=1(u−πi)

ni is represented by a matrix X̃trunc ∈ G(SA) which equals the identity
in G(SA ⊗O F). This means we can write

X̃ = X̃truncX̃err

with X̃err ≡ 1 modulo ∏
e
i=1(u − πi)

ni . Clearly X̃err acts trivially on Mµ[
1
p
] and so

X̃truncΨ(M(ρ), ι)[ 1
p
] ∈Mµ(A[ 1

p
])

Since A is p-torsion free it follows that X̃truncΨ(M(ρ), ι) ∈Mµ(A) and, since X̃trunc

equals 1 in G(SA ⊗O F) we conclude that

X̃truncΨ(M(ρ), ι) ⊗O F = Ψ(M(ρ), ι) ⊗O F ∈Mµ(A⊗O F)

which finishes the proof. �

Proof of Theorem 17.3 for general G. For general G the proof is essentially iden-
tical. As when G = GLn we can find g ∈ G(ŜA) which stabilises Mµ[

1
p
] and so

that

X̃ ∶= gXξ,β ∈ ker (G(S̃A) → G(S̃A/(u − πi)))

If, as above, we set ni = maxα∨{⟨α
∨, µi⟩} then the action of X̃ on Mµ[

1
p
] factors

through its image X̃trunc under

G(ŜA) → G(
ŜA

∏
e
i=1(u − πi)

ni
)

Therefore, it suffices to show that X̃trunc is the image under G(SA) → G(ŜA) of
an element in

ker(G(SA) → G(SA ⊗O F))
and this follows from the arguments when G = GLn after choosing a faithful repre-
sentation of G. �

Lemma 17.12. Let A be a finite flat O-algebra and suppose ni ≥ 0 are such that

e

∑
i=1

ni ≤
p − 1

ν
+ 1

for ν as in Theorem 17.3. Suppose that

ŜA

∏
e
i=1(u − πi)

ni
≅

e

∏
i=1

ŜA,i

(u − πi)ni

maps an element f onto (fi)i with fi = ∑
ni−1
n=0 fi,n(u−πi)

n for fi,n ∈ π
p−n
i W (k)⊗ZpA.

Then f is represented by an element in πiSA.

Proof. By linearity we can fix 1 ≤ i ≤ e and assume fj = 0 for i ≠ j. We need to
describe the inverse of the above isomorphism and so express f in terms of fi. For
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this we use the formal identity 1
(1−y)n

= ∑m≥0 (
n+m−1
n−1

)ym. Setting y = u−πi
πi−πj

shows

that

(u − πj)
nj

ni−1

∑
m=0

(
nj +m − 1

nj − 1
)

(u − πi)
m

(πi − πj)m+nj
≡ 1 modulo (u − πi)

ni

Therefore f is represented by

F ∶= fi∏
j≠i

(u − πj)
nj

ni−1

∑
m=0

(
nj +m − 1

nj − 1
)

(u − πi)
m

(πi − πj)m+nj
modulo (u − πi)

ni

(indeed,F ≡ fi modulo (u − πi)
ni and F ≡ 0 modulo (u − πj)

nj for j ≠ i). By
hypothesis the coefficient of (u − πi)

n in fi has coefficient with πi-adic valuation
≥ p − n ≥ p − νn (since ν ≥ 1). On the other hand, the coefficient of (u − πi)

n

in ∑
ni−1
m=0 (

nj+m−1
nj−1

)
(u−πi)

m

(πi−πj)
m+nj has πi-adic valuation ≥ −(n + nj)ν whenever i ≠ j.

Therefore, the coefficient of (u − πi)
n in F has πi-adic valuation

≥ p − ν(n +∑
i≠j

nj)

and so we will be done if p − ν(n + ∑i≠j nj) ≥ 1 for all n = 0, . . . , ni − 1. In other
words, if p − ν(−1 +∑

e
j=1 nj) ≥ 1 or equivalently

e

∑
j=1

nj ≤
p − 1

ν
+ 1

which finishes the proof. �

18. Constructing Galois actions

In this section we equip M ∈ ZG,µ,F with a canonical (and unique) crystalline
GK-action, under a bound on µ. The necessary bound is very slightly stronger
than asking that ∑

e
i=1⟨α

∨, µi⟩ ≤ p + e − 1. In order to formulate it recall that if

a Hodge type µ corresponds to an e-tuple of cocharacters (µ1, . . . , µe) of G̃ then,
after recalling that

G̃ ≅

f

∏
j=1

G⊗k,ϕi F

where f denotes the degree of k/Fp, we can also view a Hodge type as a tuple µij
of cocharacters of G for 1 ≤ i ≤ e and 1 ≤ j ≤ f .

Proposition 18.1. Let M ∈ ZG,µ,F(A) with A any finite type F-algebra and µ a
Hodge type satisfying

e

∑
i=1

⟨α∨, µij⟩ ≤ p + e − 1

for each root α∨ of G and for each 1 ≤ j ≤ f . Assume there is a 1 ≤ j ≤ f with the
inequality strict for every α∨. Then M admits a unique crystalline GK-action.

Before giving the proof we explain the propositions significance for us:

Corollary 18.2. Assume µ is as in Proposition 18.1. Then the factorisation Y µG⊗O
F→ ZG,µ,F from Theorem 17.1 is a closed immersion.
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Proof. Proposition 18.1 implies that the morphism YG ⊗O ×ZGZµ,G,F → Zµ,G,F is
an isomorphism. Since Y µG is a closed subfunctor of YG it follows that

Y µG ×ZG ZG,µ,F → ZG,µ,F

is a closed immersion. But Theorem 17.1 implies Y µG ×ZG ZG,µ,F = Y
µ
G ⊗O F so the

corollary follows. �

Proof of Proposition 18.1. The claimed uniqueness of the GK-action means that it
will commute with any descent datum on M. Therefore, it suffices to prove the
proposition after pulling M back along an fppf cover of A. This allows us to assume
that M admits a trivialisation ι over SpecSA. The proposition then follows from
the assertion that there exists a unique continuous cocycle

c ∶ GK → Uinf,A ∶= ker (G(Ainf,A) → G(Ainf,A/uϕ
−1

(µ)))

satisfying c(σ)σ(C) = Cϕ(c(σ)) for each σ ∈ GK and C = CM,ι. We will show how
this is the case when C satisfies the two properties:

(1) For each σ ∈ GK one has Cσ(C−1) ∈ Uinf,A.
(2) The σ-conjugation operator x ↦ Cxσ(C−1) is such that Adσ(C) ○ ϕ sta-

bilises g̃⊗O uϕ
−1(µ)Ainf,A and is a topologically nilpotent. Here g̃ = Lie(G̃)

and ϕ on g̃ ⊗O Ainf,A is the semi-linear extension of the trivial Frobenius
on G.

These two properties will imply that, for σ ∈ GK ,

(Adσ(C) ○ ϕ)n(Cσ(C−1
) ∈ Uinf,A

and the sequence converges to an element c(σ), defining a continuous cocycle as
desired. These claims can be checked after composing with a faithful representation
G → GLn and, writing C also for its image in GLn(Ainf,A[E(u)−1]), we are left
showing that the difference

(Adσ(C) ○ ϕ)n(σ(C)C−1
) − (Adσ(C) ○ ϕ)n−1

(σ(C)C−1
)

=(Adσ(C) ○ ϕ)n−1
(σ(C)C−1

) (Cϕ(C)ϕ(σ(C)
−1

)σ(C)
−1
− 1)

is contained in uϕ−1(µ)Mat(Ainf,A) for each n and converges to zero as n→∞. Now
(1) implies Cϕ(C)ϕ(σ(C)−1)σ(C)−1 − 1 is a matrix with entries in uϕ−1(µ)Ainf,A

and (2) implies that Adσ(C) ○ ϕ sends this matrix to another with entries in
uϕ−1(µ)Ainf,A, and that the action of this operator on the matrix is topologically
nilpotent. Thus, the claimed convergence holds. For uniqueness, suppose d(σ) is
another such cocycle. Continuing to write d(σ) and c(σ) for their images under
G → GLn we see that d(σ) − c(σ) is fixed by Adσ(C) ○ ϕ and also that the action
of Adσ(C) ○ϕ is topologically nilpotent on this element. Therefore d(σ) = c(σ). It
remains to check that conditions (1) and (2) hold whenever M ∈ ZG,µ,F(A).

Verifying condition (2). Condition (2) will be a consequence of the fact that Ψ(M, ι) ∈
YG̃,≤µ and the bound on µ. Indeed, Ψ(M, ι) ∈ YG̃,≤µ ensures that

uhj Ad(C) ∶ gj ↦ gj ⊗O SA

where hj = max∑
e
i=1⟨α

∨, µij⟩ for j = 1, . . . , f and gj = Lie(G) denotes the Lie algebra

of the j-th factor in G̃ ≅ ∏
f
i=1G ×W (k),ϕ W (k). Thus uhj Adσ(C) sends gj into

gj⊗OAinf,A also. Since ϕ on g̃⊗OAinf,A restricts to the map gj⊗OAinf → gj+1⊗OAinf
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which is the identity on the first factor and the Frobenius on the second, the operator
(Ad(C) ○ ϕ)n acts as

gj ⊗O uϕ
−1

(µ)Ainf,A
Ad(C)○ϕ
ÐÐÐÐÐ→ gj+1 ⊗O u

p−hj+1µAinf,A

Ad(C)○ϕ
ÐÐÐÐÐ→ gj+1 ⊗O u

p2
−phj+1−hj+2ϕ(µ)Ainf,A

. . .

Ad(C)○ϕ
ÐÐÐÐÐ→ gj+n ⊗O u

pn−pn−1hj+1−p
n−2hj+2−...−hj+nϕn(µ)Ainf,A

Since A is an F-algebra we have ϕn(µ)Ainf,A = uep
n
/(p−1)Ainf,A (see [Fon94b, 5.1.2])

so (2) is equivalent to asking that

pn(
e

p − 1
+ 1) − pn−1hj+1 − p

n−2hj+2 − . . . − hj+n ≥
p − 1 + e

p − 1

for n ≥ 0 and that this sequence converges to ∞ as n → ∞. That this is the case
under the assumptions on the hj is an easy computation.

Verifying condition (1). Condition (1) will be a consequence of the fact that Ψ(M, ι) ∈
Mµ, and holds without any assumption on µ. In fact, Mµ is contained inside a

closed subscheme Gr∇σ
G̃

⊂ GrG̃ whose A-valued points, for any p-adically complete

O-algebra A of topologically finite type, consists of those (E , ι) ∈ Gr∇σ
G̃

(A) for which

there exists an fpcq cover A′ → A trivialising E so that

(E , ι) ⊗A A
′
= (E

0,C) ⇔ Cσ(C)
−1

∈ Uinf,A′

for every σ ∈ GK . That this condition is closed, and that Mµ ⊂ Gr∇σ
G̃

easily reduce,

after choosing a faithful representation, to the case of GLn, where they are proved
in [Bar21, 7.4] and [Bar21, 7.6]. �

19. Cycle inequalities

Now we can prove the main theorem:

Theorem 19.1. Assume that G admits a twisting element ρ and let ρ ∶ GK →

G(F) be a continuous homomorphism. Let µ be a Hodge type with each µi strictly
dominant. Suppose also that

e

∑
i=1

⟨α∨, µi⟩ ≤ p

for each root α∨ of G̃. Then, as ∑
e
i=1 dim G̃/Pµi-dimensional cycles inside of

SpecR◻
ρ ⊗O F, one has

[SpecR◻,cr,µ
ρ ⊗O F] ≤ ∑

λ

mλ[SpecR◻,cr,λ̃
ρ ⊗O F]

where

● The ≤ indicates that the difference is an effective cycle, i.e. a Z≥0-linear
combination of integral closed subschemes.

● The sum runs over dominant cocharacters λ of G̃.
● λ̃ denotes the Hodge type given by the e-tuple (λ + ρ, ρ, . . . , ρ).
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● mλ denotes the multiplicity of W (λ) inside ⊗e
i=1W (µi − ρ). It follows

from [Jan03, 5.6] and [Her09, 3.10] that, due to the bound on µ, mλ can
equivalently be defined as the multiplicity of the representation of G(F)
obtained from the F-valued points of W (λ) inside that induced from the
F-valued points in ⊗e

i=1W (µi − ρ).

In the proof we use the standard functoriality of groups of cycles, namely the
existence of a pullback homomorphism along flat morphisms and the pushforward
along proper morphisms. See for example [Sta17, 02R3, 02RA].

Proof. First, we can assume e > 1 since when e = 1 the theorem is vacuous. As a
consequence the inequality ∑

e
i=1⟨α

∨, µi⟩ ≤ p ensures that Corollary 18.2 is applica-
ble.

Theorem 12.1 gives an identity of cycles [Mµ⊗OF] = ∑λmλ[Mλ̃⊗OF]. For suffi-
ciently large N we can pull this identity back along the formally smooth morphism
ΨN giving an equality

[Z̃G ×GrG̃
(Mµ ⊗O F)/ϕUG,N ] = ∑

λ

mλ[Z̃G ×GrG̃
(Mλ̃ ⊗O F)/ϕUG,N ]

of dimGG,N +∑
e
i=1 dim G̃/Pµi-dimensional cycles. This identity then descends to an

identity

[Zµ,G,F] = ∑
λ

mλ[Zλ̃,G,F]

of ∑
e
i=1 dim G̃/Pµi-dimensional cycles. Note that here we are discussing cycles inside

an algebraic stack, as opposed to a scheme. In this case a cycle is again a formal
linear combination of integral closed substacks, with the notion of multiplicity as
discussed in [Sta17, 0DR4]. We also observe that, since GG,N is smooth and irre-
ducible, the irreducibility and generic reducedness of Mλ̃ ⊗O F from Theorem 9.1
is shared by Zλ̃,G,F.

Now Corollary 18.2 implies that [Y µG ⊗O F] ≤ [ZG,µ,F]. The irreducibility and
generic reducedness of ZG,λ̃,F, together with the fact that dimY µG ⊗OF = dimZG,µ,F

implies that this is an equality when µ = λ̃. Therefore, we have

[Y µG ⊗O F] ≤ ∑
λ

mλ[Y
λ̃
G ⊗O F]

Pulling this identity back along the formally smooth morphism from Lemma 16.6
gives

[L
cr,µ
ρ ⊗O F] ≤ ∑

λ

mλ[L
cr,λ̃
ρ ⊗O F]

Finally, pushing this identity along the proper morphism Lcr,µ
ρ ⊗OF→ SpecR◻

ρ ⊗OF
and using [Bar21, 3.3] to equate the pushforward of [Lcr,µ

ρ ⊗OF] with [SpecR◻,cr,µ
ρ ⊗O

F] proves the theorem. �

20. Monodromy and Galois

Here we give a proof of the following equivalent formulation of Proposition 17.8.
For simplicity we work with Zp coefficients but the extension to any coefficient ring
which is finite and flat over Zp is immediate.
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Proposition 20.1. Let M denote the Breuil–Kisin module associated to a crys-
talline representation ρ ∶ GK → GLn(Zp) and let N∇ be the operator over ∂ = u d

du

on M⊗S O
rig[ 1

λ
] induced from the ϕ-equivariant identification

M⊗S O
rig

[ 1
λ
] ≅D(ρ) ⊗S O

rig
[ 1
λ
]

described in 17.5. If N∇(ι) = ιN for an S-basis ι of M then N ∈ u
p

Mat(Smax) for

Smax ∶=W (k)[[u, u
e

p
]].

As explained in Remark 17.9, the results of this section are not strictly speaking
necessary for this paper but we still think they may be useful to help orient the
reader.

20.2. The ideas go back to [GLS14], with the new insight being that improved
bounds can be achieved by replacing Fontaine’s crystalline period ring Bcrys with a
better behaved period ring Bmax. This ring is defined in [Col98, §III] by considering
the subring Amax of B+

dR consisting of elements which can be expressed as

∑
n≥0

xn (
ν

p
)
n

for ν any element generating the kernel of usual surjection Θ ∶ Ainf → OC and
xn ∈ Ainf a sequence converging p-adically to zero. Note that E(u) is one such
generator of this kernel. Then B+

max = Amax[
1
p
] and Bmax = B+

max[
1
t
] for t ∶=

log([ε]) = ∑n≥0(−1)n ([ε]−1)n

n
. The essential property that we will need is:

Lemma 20.3. Recall that Orig denotes the ring of power series in K0[[u]] con-

verging on the open unit disk, and λ ∶= ∏n≥0 ϕ
n(

E(u)
E(0)

)n. Then the inclusion of

S→ Ainf extends to an embedding of Orig[ 1
λ
] → Bmax so that

O
rig

[ 1
λ
] ∩Amax ⊂ Smax

Proof. An easy computation shows that each ϕn(E(u))
p

is invertible in Smax, and so

it suffices to show Orig ∩Amax ⊂ Smax. Any f ∈ Orig can be expressed uniquely as

f = ∑(
E(u)
p

)
nqn

with qn ∈K0[u] polynomials of degree < e converging p-adically to zero and we have
f ∈ Smax. We claim that f ∈ Amax if and only if each qn ∈W (k)[u]. This will prove
the proposition because it will imply f ∈ Smax. To see this we use a result of Colmez.
Recall that Θ extends to a surjection Θ ∶ B+

dR → C and, following [Col98, §V.3], we

call an element x ∈ B+
dR flat if θ(x) ≠ 0 and if x ∈ pw(x)Ainf where w(x) denotes the

integer part of vp(Θ(x)). We also say zero if flat. If qn = ∑
e−1
i=0 aiu

i is non-zero then

Θ(qn) = ∑
e−1
i=0 aiπ

i is non-zero and w(Θ(qn)) = min vp(ai). Thus qn ∈ p
w(Θ(qn))Ainf

and so each qn is flat. Colmez shows in [Col98, Lemme V.3.1] that if x ∈ B+
dR can

be expressed as a sum ∑n≥0 yn(
ν
p
)n with ν ∈ Ainf ∩ ker Θ a generator and yn ∈ B

+
dR

flat, then x ∈ Amax if and only if w(yn) ≥ 0 and converges to ∞. Since E(u) is one
possible generator of ker Θ this gives the result. �

Combining Lemma 20.3 with the following gives Proposition 20.1.

Proposition 20.4. With notation as in Proposition 20.1 one has N ∈ u
pλ

Mat(Amax).
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20.5. To prove this first observe that Amax has a natural Frobenius ϕ and a ϕ-
equivariant GK-action extending that on Ainf . Furthermore, one has ϕ(Bmax) ⊂

Bcrys ⊂ Bmax which shows that Bmax can be used as a replacement for the crystalline
period ring Bcrys. This means that there are ϕ-equivariant identifications

(20.6) ρ⊗Zp Bmax ≅D(ρ) ⊗K0 Bmax ≅M⊗S Bmax

with the first being GK-equivariant for the trivial action of GK on D(ρ). Here the
second isomorphism is the base-change of the ϕ-equivariant isomorphism

(20.7) M⊗S O
rig

[ 1
λ
] ≅D(ρ) ⊗K0 O

rig
[ 1
λ
]

described in 17.5, while the composite is obtained from the identification

(20.8) M⊗SW (C♭
) ≅ ρ⊗Zp W (C♭

)

in Theorem 16.2, after applying [BMS18, 4.26] to descend this isomorphism to
Ainf[

1
µ
], and then base-changing to Bmax.

The key to proving Proposition 20.4 is to relate, inside of (20.6), the GK-action
coming ρ with the operator N∇ coming from D(ρ):

Lemma 20.9. For any σ ∈ GK and m ∈M⊗S O
rig[ 1

λ
] one has

(σ − 1)(m) = ∑
n≥1

Nn
∇(m) ⊗

(− log([ε(σ)]))
n

n!

Conversely, if σ ∈ GK acts trivially on Zp(1) = lim
←Ð

µpn(C) (i.e. if the cyclotomic

character χcyc is trivial on σ) then

N∇(m) =
−1

log([ε(σ)])

∞

∑
n=1

(−1)n+1 (σ − 1)n

n
(m)

where ε(σ) ∈ Zp(1) = σ(u)/u.

Here convergence of the sums is taken with respect to the topology on B+
max

with basis of open neighbourhoods of 0 given by pnAmax. Since Amax is p-adically
complete so is B+

max for this topology.

Proof. It suffices to check these identities for m = d⊗f for d ∈D(ρ) and f ∈ Orig[ 1
λ
].

Since (σ−1)(d) = N∇(d) = 0 the lemma reduces to the claim that when χcyc(σ) = 1

−1

log([ε(σ)])

∞

∑
n=1

(−1)n+1 (σ − 1)n

n
(f)

converges in B+
max to ∂(f) and, for any σ ∈ GK ,

∑
n≥1

∂n(f) ⊗
(− log([ε(σ)]))

n

n!

converges in B+
max to (σ−1)(f). It suffices to check either claim when f = ui. For the

first note that if χcyc(σ) = 1 then (σ −1)n(ui) = ui([ε(σ)]−1)n for all n. Therefore
the claimed convergence follows from the easy observation [ε(σ)] − 1 ∈ pAmax when

p > 2 and that, when p = 2, instead has [ε(σ)] − 1 = ([ε(σ)]1/2 − 1)([ε(σ)]1/2 +
1) ∈ 4Amax. For the second claim we note that, since ∂n(f) = (−i)nui and so

∑n≥1 ∂
n(f) ⊗ (− log([ε(σ)]))n

n!
= exp(log([ε(σ)])). By the same argument as above,

this converges to ui[ε(σ)] = σ(f). �



50 R. BARTLETT

Next we prove the divisibility of the GK-action asserted in Theorem 16.2. Ac-
tually, we need something a little stronger:

Proposition 20.10. If m ∈M and σ ∈ GK then

(σ − 1)n(m) ∈M⊗S uϕ−1
(µ)nAinf

for n = 1. If additionally χcyc(σ) = 1 then this is true for all n ≥ 1.

Here we will use that the topology on B+
max (in contrast to that on B+

crys) is well
behaved. More precisely, one has [Col98, Proposition III.2.1] which implies that
any principal ideal in B+

max is closed.

Proof. We show the equivalent assertion that (σ − 1)n(ϕ(m)) ∈ Mϕ ⊗S upµnAinf

for Mϕ the image of ϕ∗M in M[ 1
E(u)

] under the Frobenius. Iterating the formula

in Lemma 20.9 shows that (σ − 1)n(ϕ(m)) can be expressed as

(20.11)
∞

∑
j=n

⎛

⎝
∑

j1+...+jn=j,ji≥1

N j
∇(m) ⊗

(− log([ε(σ)]))j

j1! . . . jn!

⎞

⎠

for n = 1 and any σ ∈ GK and, if χcyc(σ) = 1, for all n ≥ 1. As explained in 17.5,
(20.7) arises from an identification Mϕ ⊗SO

rig[ 1
ϕ(λ)

] ≅D(ρ) ⊗K0 O
rig[ 1

ϕ(λ)
]. This

means that N j
∇(ϕ(m)) ∈ Mϕ ⊗S uOrig[ 1

ϕ(λ)
] for each j ≥ 1 and so each term of

(20.11) is contained in uptjB+
max. Since all principal ideals in B+

max are closed it
follows that the entire sum is contained in Mϕ ⊗S uptnB+

max also.
On the other hand, since (20.8) descends to an isomorphism over Ainf[

1
µ
], we

also know that (σ − 1)(ϕ(m)) ∈ Mϕ ⊗S Ainf[
1
µ
]. The proposition will therefore

follow from the assertion that

Ainf[
1
µ
] ∩ uptnB+

max = u
pµnAinf

To prove this first note that t
µ

is a unit in Amax by [Col98, Lemme III.3.9]. There-

fore, we need to show that if a ∈ Ainf ∩ µ
nB+

max then a ∈ µnAinf and if a ∈ Ainf ∩

unBmax then a ∈ unAinf . The first claim follows from the fact [Fon94a, Proposition
5.1.3] that µ generates the ideal in consisting of those x ∈ Ainf with ϕn(x) ∈ ker θ
for all n ≥ 0. For the second claim we use [Liu13, Lemma 3.2.2] which shows
unB+

crys ∩Ainf = u
nAinf . Since ϕ(B+

max) ⊂ Bcrys ⊂ Bmax, if b ∈ unB+
max ∩Ainf then

ϕ(b) ∈ upnB+
crys ∩Ainf = u

pnAinf . Thus b ∈ unAinf , as required. �

Finally we can prove:

Proof of Proposition 20.4. The assumption that K∞ ∩K(µp∞) = K ensures that
σ ∈ GK can be found with ε(σ) equal the fixed generator ε ∈ Zp(1) and χcyc(σ) = 1.
For such a σ we have

N∇(m) =
−1

t

∞

∑
n=1

(−1)n+1 (σ − 1)n

n
(m)

for any m ∈ M. By Proposition 20.10 we know (σ − 1)n(m) ∈ M ⊗S uϕ−1(µ)Ainf

for each n ≥ 1. We are going to show that each term in the above sum, and hence

the sum itself, is contained M⊗S
uϕ−1

(µ)
t

Amax.

For this claim it suffices to show that ϕ−1(µ)n−1 ∈ nAmax. Since ϕ−1(µ)p ≡ µ

modulo pAinf it follows that α ∶= ϕ−1
(µ)p

p
−
µ
p
∈ Ainf . Since ϕn(α) ∈ ker θ for all n ≥ 1
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we know that ϕ(α) is divisible by µ in Ainf . Hence α
ϕ−1(µ)

=
ϕ−1

(µ)p−1

p
−

µ
ϕ−1(µ)p

∈ Ainf .

Since µ
ϕ−1(µ)

generates the kernel of Θ it follows that ϕ−1
(µ)p−1

p
∈ Amax, and so the

claim holds when n = p. For general n, we write n = psm for m coprime to p.
Since ps − 1 = (p − 1)(1 + p + . . . + ps−1) we have n − 1 ≥ ps − 1 ≥ (p − 1)s and so
ϕ−1

(µ)n−1

ps
∈ Amax which proves the claim.

It remains only to show that ϕ−1
(µ)
t

Amax = 1
pλ
Amax. We showed above that µ

generates the same ideal of Amax as t so this is equivalent to showing that µ
ϕ−1(µ)p

and λ generate the same ideal. As µ
ϕ−1(µ)

and E(u) generate the same ideal in Ainf

this is equivalent to asking that ϕ(λ) is a unit in Amax. But this is clear because
ϕn(E(u))
E(0)

− 1 is topologically nilpotent in Amax for n ≥ 1. �
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