CYCLES RELATIONS IN THE AFFINE GRASSMANNIAN AND
APPLICATIONS TO BREUIL-MEZARD FOR G-CRYSTALLINE

REPRESENTATIONS

ROBIN BARTLETT

ABSTRACT. For a split reductive group G we realise identities in the Grothendieck
group of G-representations in terms of cycle relations between certain closed
subschemes inside the affine grassmannian. These closed subschemes are ob-
tained as a degeneration of e-fold products of flag varieties and, under a bound
on the Hodge type, we relate the geometry of these degenerations to that of
moduli spaces of G-valued crystalline representations of Gal(K/K) for K/Q,

a finite extension with ramification degree e. By transferring the aforemen-
tioned cycle relations to these moduli spaces we deduce one direction of the
Breuil-Mézard conjecture for G-valued crystalline representations with small
Hodge type.
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1. INTRODUCTION

The goal of this paper is to prove new results towards the Breuil-Mézard conjec-
ture for crystalline representations valued in a connected split reductive group G.
This open conjecture is a combinatorial shadow of the expected p-adic Langlands
correspondence and describes multiplicities of irreducible components inside mod-
uli spaces of p-adic Galois representations. We refer to the introduction of [Bar21]
or [EG23, §1.7] for more details, at least when G = GL,,. To achieve our goal we
describe new structures in the affine grassmannian which exhibit Breuil-Mézard
phenomena, and relate these to moduli of Galois representations. When G = GLo
these results were proven in [Bar21], and what we do here extends these techniques
to general G.

There are two main theorems we prove. The first is purely algebro-geometric and
describes an analogue of the Breuil-Mézard conjecture for certain closed subschemes
inside the affine grassmannian. For this we fix a split reductive group G, together
with a choice of maximal torus and Borel T'c B and write G for the dual group.
We let Grg,r denote the associated affine grassmannian over a field F and, for an
integer e > 1 and any e-tuple of dominant cocharacters pu = (u1, ..., te) of G, we
define closed subschemes M, r c Grgr as degenerations of an e-fold product of
flag varieties G/P,, x ... x G/P,_ (see the first bullet point after Theorem 1.1 for
more details). We then show that the geometry of these M, r as p varies can be
described in terms of the representation theory of e-fold tensor products of the
G-representations W (y;) (for any dominant cocharacter A of G we write W(\) for
the associated Weyl module, viewed as an algebraic representation of @) More
precisely, we prove:

Theorem 1.1. Assume G admits a twisting element p, i.e. a cocharacter pairing
to 1 with all simple roots of G. Then, for any tuple p = (p1,...,1e) of strictly
dominant cocharacters of G (i.e. u; —p is dominant) satisfying

Y (a¥, pi) <charF+e-1
i=1

for all roots & of G (when charF = 0 this condition is not needed) one has identities
of edim G/B-dimensional cycles

[MM;F] = Z mx [M(Aer.,p,...,p),]F]
A

where my denotes the multiplicity of W () inside @71 W(u; — p). Furthermore,
each M(xipp,....0),F appearing in this sum is irreducible and generically reduced.

A twisting element p need not always exist (e.g. if G = SLy) but will whenever
G is semi-simple and simply connected, or has simply connected derived subgroup
(e.g. if G = GL,). Twisting elements can also always be found after replacing
G by a G,,-extension [BG14, §5]. When G = GL, the cocharacters j; identify
with n-tuples (i1, .., fti,n) of integers via p;(t) = diag(t#+1, ..., t#*n). Under this
identification we can take p = (n—1,n-2,...,1,0). Then p; being strictly dominant
is equivalent to asking that x; — x;41 > 1 for each ¢ and the bounds in Theorem 1.1
are equivalent to asking that

€
Z(Mi,l —ftin) <charF+e-1
i=1
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The following three points identify the crucial inputs into the proof of Theorem 1.1:

(1.2)

e In order to construct the degenerations M, r we choose a discrete valuation

ring O with residue field F and an e-tuple of pairwise distinct 71,..., 7,
in the maximal ideal of O. Viewing G as a group over SpecO we use
T1,...,Te to extend Grg r to and ind-O-scheme Grg (as a specialisation of
the Beilinson-Drinfeld grassmannian over AY) with generic fibre an e-fold
product of Grg mraco’s. Any tuple g = (p1, ..., ge) then determines a closed
immersion

G/P,, x...xG[P,, = Grg®pFracO

for P,, the associated parabolic subgroup. We set M,, equal the closure of
this embedding inside Grg and M, r the fibre over Spec[F.
Next we establish cycle identities

[(Mu+p,...netp) @0 F] = Z”/\[M(A+p,p,--»7p) ®0 F]
)

for ny € Zso, a priori, with no representation theoretic interpretation. This
is essentially a topological calculation and is achieved by giving an explicit
moduli description of a closed subscheme in Grg approximating M, in the
sense that

\Y%
AJHﬂ~C(}rSH

and that the top dimensional irreducible components of Grzﬂ ®oF generi-
cally identify with the Mxip,p,....p),F for dominant A with A+ep < p1+. . .+ e
The moduli description of GrSv ., 1s primarily Lie theoretic, and can be viewed
as either an infinitesimal version of being fixed by the loop rotation, or as
an incarnation of Griffiths transversality for Breuil-Kisin modules. It is in
these calculations that the restriction on charF and the strict dominance
of the p; play a crucial role.

To finish the proof it remains to identify the n)’s with the representation
theoretic multiplicities my. For this we consider the G-equivariant ample
line bundle £ on Grg obtained by pulling back the determinant bundle
along the adjoint representation. The restriction of £ to My, 4p,... u.+p) ®0
Frac O can be expressed explicitly as a product of equivariant line bundles
on flag varieties. Using ampleness of £ and flatness of M, ., . ) over
O we are therefore able to identify, for sufficiently large n,

Hetp

e
HO(M(erp.,---,chrp) ®0 E['@n) = @ W (np(ui +p))

i
as G-representations over F. Here p(n) = ¥ v{a¥,n)a" is the homomor-
phism from cocharacters to characters induced by the Killing form. In
Section 10 we show that if X is a T-equivariant scheme admitting an
equivariant ample line bundle Lx then any identity of cycles between
T-equivariant closed subschemes induces an asymptotic formula between
the global sections of high powers of Lx inside the Grothendieck group
of T-representations. Applying this to (1.2) and £ produces a formula
involving the ny which asymptotically relates [®5_; W{(np(u; + p))] and
[W (np(A+p))®W (np(p))®'], in the sense that an appropriate difference
is polynomial in n of degree < edim G/B. In Sections 12 and 13 we show,
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using elementary manipulations with the Weyl character formula, that such
asymptotic relations can only occur if m) = ny, proving Theorem 1.1.

Our second main theorem specialises to the case of residue characteristic p, and
proves new instances of one direction of the Breuil-Mézard conjecture (namely
that Galois multiplicities are < automorphic multiplicities). It is deduced from
Theorem 1.1 by relating the geometry of the M,’s to that of moduli spaces of
crystalline representations.

Theorem 1.3. Continue to assume G admits a twisting element p and let K [Q,, be

a finite extension with ramification degree e. Let R%’Cr’” denote the framed deforma-

tion ring of a fixred p: G — G(E,) classifying G-valued crystalline representations

with Hodge type p = (uﬁ)R_K_,@ . Suppose further that each . is strictly dominant
: P

and, for each kg :k — Fp,

Z <avaﬂﬁ> <p

Klk:K/O

for all roots &¥ of G. Then, as dim G + [K : Q,] dim G/B-dimensional cycles,

[Rl;,cr,u ®Zp Fp] < ; my [ngcry(Aﬂww-,P) ®Zp Fp]

where again my denotes the multiplicity of the Weyl module W () of highest weight
A inside @5 Wi —p).

When G = GL,, we can again identify the y,, with n-tuples of integers (fu.1, - - -, fir
so that p=(n-1,n-2,...,1,0). Then the bound on the u,’s is equivalent to asking
that

Z (Un,l - Un,n) <p
Klk=Ko
In particular, we see that the theorem, roughly speaking, accesses Hodge types
contained in the interval [0, p/e]. Note that since we also ask each p,, to be strictly
dominant we have f 1 — ftxn, > n—1 and so p as in Theorem 1.3 will only exist
when e(n-1) <p.

The crux of Theorem 1.3’s proof lies in connecting crystalline representations to
the M, r. This passage is achieved via the intermediary of Breuil-Kisin modules
associated to crystalline representations. To explain this we assume, for notational
simplicity, that K is totally ramified over Q, and let O be the ring of integers
in a finite extension containing the Galois closure of K and with residue field F.
Let 991 denote the Breuil-Kisin module associated to a crystalline representation
valued in G(@). This is a G-torsor on Spec O[[u]] equipped with an isomorphism
@*m[ﬁ] ] W[ﬁ], where ¢ is given by u —~ w? and F(u) is the minimal
polynomial of a fixed choice of uniformiser w € K. Any trivialisation ¢ of 9 over
Spec O[[u]] produces an O-valued point W(9M,:) € Grg describing the relative
position of M and ¢*M. We prove that if the Hodge type p of the crystalline
representation satisfies the bound from Theorem 1.3 then ¥(9M,:) @ F € M, 5.
The following describes the central idea:

e Consideration of Kisin’s original construction of 9 from [Kis06] shows that,
without any bound on u, one has

X-w(M,0)[5] e Mu[;]

1
p

n)
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for X € G(O"¢[1]) the automorphism inducing a Frobenius equivariant

identification M ® O"8[1] = D ® O"8[1]. Here D is the filtered ¢-module

associated to the crystalline representation, O"# is the ring of power series
7))

e While X will almost never be defined integrally, calculations of [Liul5] and
[GLS14] bound the order of % in the coefficients of X (more precisely, they
bound the coefficients of the monodromy operator from which X can be
recovered). Using this we are able to show that a truncation X""* of X
modulo sufficient high powers of F(u) (depending upon p) is such that
X'un js integral, = 1 modulo the maximal ideal of O, and still satisfies

XU () [] € M,[L]
Thus ¥(9M, 1) ®o F € M, r as desired.

More generally this construction works whenever the crystalline representation is
valued in G(A) for A any finite flat O-algebra for which the associated Breuil-Kisin
module is a G-torsor on Spec A[[u]] (which is not automatic). As a consequence, if
one considers the standard diagram (whose construction goes back to [Kis09b] and
[PRO9])

convergent on the open unit disk over Frac O, and A = [T,,59 ©™(

XTY GI'G

in which X denotes an appropriate moduli space of crystalline Galois representa-
tions, Y a moduli space of Breuil-Kisin modules associated to crystalline Galois
representations, and Y a rigidification of Y classifying an additional choice of trivi-
alisation, then the restriction of ¥ to the fibre over SpecF of the closed locus Y* ¢ ¥
of Breuil-Kisin modules of Hodge type p factors through M, . An additional (but
much simpler) argument shows that, under the bound on p, the morphism ¥ is
formally smooth over M, r. As a result the cycle identities in Theorem 1.1 can be
pulled back along ¥, descended along I', and then pushed forward along the proper
morphism ©. Since we only know that the preimage of M, r contains Y* ®TF this
process produces an identity of cycles

(X851 = ZmalXg™ 7]
A

inside X ®F with [ X#®[F] < [X{'] for X* ¢ X the locus of crystalline representations
of Hodge type pu. However, by the last part of Theorem 1.1, and the fact that over
each M, r the morphism ¥ is smooth with irreducible fibres, we can additionally
show that Xé“p’p’”"p) is irreducible and generically reduced. Thus [Xé“p’p"”’p)] =
[X(A+epp) @ B]. This gives the inequality in Theorem 1.3. The most natural
choice for X would be the moduli stack of Galois representations, constructed in
[EG23] when G = GL,,. Since the case of more general groups has yet to be written
up (though this is likely to be addressed by work of Lin, see for example [Lin23])
we take, in the body of the text, X equal to the formal spectrum of a Galois
deformation ring.

The methods of this paper do not appear to give any way to prove an equality
in Theorem 1.3. This would come down to showing that [X* ® F] < [X[/] is an
equality which ultimately, is a question about producing crystalline lifts with Hodge
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type w of torsion Breuil-Kisin modules whose relative position in Grg is contained
in M, r. On the other hand, at least when G' = GL,, equality could be obtained
by proving the full support of patched modules for e.g. at Hodge types of the form
(A+p,...,p). We hope to do this in future work.

Additional remarks.

e We don’t know if Theorem 1.1 remains true without the bound on charF,
or whether this bound, if necessary, is at all sharp. It is, however, worth
observing that the bound in Theorem 1.1 is somewhat natural because of its
relation to the irreducibility of the W (\) appearing in ®7_; W (u;—p). More
precisely, recall from [Jan03, 5.6] that, when F has positive characteristic,
W (M) is simple when viewed as an algebraic representation over F whenever
0 < {(aY,A+p) < p. Since W(A) appears in ®F_; W(u; — p) only if A <
> 1(pi — p) each such W(A) will be simple if

(o, ;) < charF + (e - 1) maxov{a”, p)
-1

K3

If max,v(a¥,p) =1 (e.g. if G = GLy) then this is exactly the bound in
Theorem 1.1 and so one might hypothesise that Theorem 1.1 remains true
at least under this stronger bound. On the other hand, the irreducibility of
the W() does not appear to play any direct role in our methods, making
the significance of these observations questionable.

e In contrast, the stronger bound on the p in Theorem 1.3 is far more unnat-
ural. It arises from certain estimates in p-adic Hodge theory which could
quite possibly be improved, at least so that they agree with the bound in
Theorem 1.1.

e The requirement in Theorem 1.3 that the u, be strictly dominant arises
only from its appearance in Theorem 1.1. In particular, if a version of The-
orem 1.1 could be proven for not necessarily strictly dominant cocharacters
then the same arguments would allow any such cycle identities to be trans-
ferred to an inequality of cycles of crystalline representations with irregular
Hodge types.

o While we suppress it from the notation we are not able to show that the
M,, r do not depend upon the choice of O and the 71, ..., 7. Indeed, a more
natural construction of the M, r would involve taking M, as the closure
inside the Beilinson—Drinfeld grassmannian over A7 of an embedding an
e-fold product of flag varieties over the locus of pairwise distinct tuples in
AZ. Then one could define M, r as the fibre over 0 € Ag, which would be
independent of any choices. The problem is that, with this definition, we
would need to know that M, r is flat around 0 € A7 and this is probably
a rather subtle question (the analogous assertion for Schubert varieties is
unknown for G not of type A).

Connections to previous work. We conclude by saying a little about how this
paper relates to previous work. Concrete results so far towards Breuil-Mézard fall
into two broad categories and (with a few exceptions that we mention shortly) all
consider the case of GL,,. The first category considers the situation where G = GLs
and K = Q,. Here the conjecture is now essentially known, see [Kis09a, Pasl5,
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HT15,San14, Tun21]. These results rely on the existence of a form of the p-adic
Langlands correspondence, and therefore have little direct relation to our work.

The second category treats the conjecture in either higher dimensions and/or
with K a finite extension of Q,, but at the cost of making (as we do) very strong
assumptions on the size of the Hodge types appearing. For example, [GK14] proves
the conjecture for any K/Q, and two dimensional potentially crystalline represen-
tation of G with Hodge type (0,1), while [LLHLM18] proves the conjecture for
K /Q, unramified and n-dimensional (tamely) potentially crystalline representation
of G whose Hodge type is bounded by an inexplicit formula in terms of p and the
tame type (which, at the very least, requires the Hodge types to be < p)

While the assumptions of both [GK14] and [LLHLM18] are entirely perpendic-
ular to ours (in situations where the assumptions overlap the statement of Breuil-
Mézard is vacuous) their methods are much closer in sprit to those of our paper.
Indeed, both use moduli spaces of Breuil-Kisin modules to control moduli spaces
of Galois representations, and describe the former moduli spaces in terms of closed
subschemes inside an affine grassmannian. This is particularly true of the closed
subschemes appearing in [LLHLM18] which are defined as a degeneration of a single
flag variety (recall they consider e = 1) in an affine flag variety (i.e. a twisting of
Grg which accounts for the tame type). Clearly, combining this definition with our
construction of M, r describes candidate closed subschemes modelling the geome-
try of Breuil-Kisin modules associated to potentially crystalline representations of
any finite extension of Q, (at least for small Hodge types). On the other hand,
there are significant points of departure from our methods and those of [GK14] and
[LLHLM18]. While we use the control of moduli of Breuil-Kisin modules to directly
analyse the special fibres of moduli of Galois representations, in loc. cit. they are
used as a means to prove modularity lifting theorems, which are in turn used to
control the moduli spaces of local Galois representations using patched modules.

Finally, while the majority of work towards Breuil-Mézard has focused on the
case of GL,,, there has also been considerations of other groups. In [GG15] and
[Dot18] the conjecture is considered for the group of units in a central division alge-
bra, and in the latter it is shown that these conjectures follow from the conjecture
for GL,,. In [DR22] the conjecture for PGL,, is also shown to follow from the case
of GL,,. We also mention [Lev15] and [BL20] which use methods similar to ours
to describe some deformation rings on crystalline representations valued in split
reductive G.

Acknowledgements. 1 would like to thank Yifei Zhao for many helpful conversations.
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Part 1. Cycles identities in the affine grassmannian
2. NOTATION

2.1. Let O be a discrete valuation ring with residue field F and fraction field E.
Let G be a split reductive group over Spec O with connected fibres together with a
choice of maximal torus T. Let X.(7T') = Hom(G,,,T) and X*(T") = Hom(T,G,)
and write ( , ) for the natural pairing X*(T) x X.(T) - Z. Let RY ¢ X*(T) be
the roots (G,T) and for a¥ € RY write a € X,(T) for the corresponding coroot.
Let W be the Weyl group of (G,T). Choose a set of positive roots RY ¢ RY, with
associated Borel B. Let R, denote the corresponding set of positive coroots. Recall
N<p e p -Ae Y Zspa¥

aeRY
and that AY € X*(T) is dominant if (A\Y,a) > 0 for all positive coroots o € R,. We
say A is strictly dominant if (\Y, @) > 1. We likewise make sense of < on X, (7T') as
well as dominant and strictly dominant A € X, (T).

Definition 2.2. An element p € X, (T) is called a twisting element if (", p) =1
for all simple roots . Similarly p¥ € X*(T') is a twisting element if (p¥,a) =1 for
all simple coroots a.

Notice that if p € X, (7T) is a twisting element then p— % Y aer, v is W-invariant.
Also A e X, (T) is strictly dominant if and only if A — p is dominant.

3. TORSORS

3.1. Throughout this paper we view G-torsors from the following two equivalent
viewpoints:
e A G-torsor £ on Spec A is an A-scheme equipped with an action of G so
that fppf (equivalently etale) locally on A one has € 2 G x¢ Spec A.
e A fibre functor (a faithful exact tensor functor) from the category of rep-
resentations of G on finite free O-modules into the category of projective
A-modules.

Any G-torsor in the first sense induces a fibre functor which sends a representation
X : G - GL(V') onto the contracted product
EX=EXXV =ExV /]~

That this construction produces an equivalence of categories is proved in e.g.
[Brol3, 4.8]. We always write £° for the trivial G-torsor and a trivialisation of
a G-torsor on Spec A is an isomorphism £ = £° over Spec A.

4. AFFINE GRASSMANNIANS
Fix an integer e > 1 and pairwise distinct 71,..., 7, in the maximal ideal of O.
For any O-algebra A we write E(u) = [T (u—m;) € Alu].
Definition 4.1. Let Grg denote the projective ind-scheme over O whose A-points,
for any O-algebra A, classify isomorphism classes of pairs (€,t) where

e & is a G-torsor over Spec A[u],
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e . is a trivialisation of £ over the open subscheme Spec A[u, E(u)™'], i.e. an
isomorphism

£|SpecA[u,E(u)‘1] = 50|SpecA[u,E(u)‘1]
where £° denotes the trivial G-torsor.
We also consider variants Grg; of Grg for ¢ = 1,...,e which are again projective
ind-schemes over @, and whose A-points classify isomorphism classes of pairs (£,¢)
with & a G-torsor on Spec A[u] and ¢ is a trivialisation of £ over the open subscheme

Spec A[u, (u - m;)"']. Notice that for each i there are natural closed immersions
Grg,; = Grg. Each of Grg and Grg; are also functorial in G.

Remark 4.2. When G = GL,, the above functor is a colimit over a > 0 of the functors
sending an O-algebra A onto the set of rank n projective A[u] submodules
E(uw)*Alu]® c & c E(u) *A[u]"

Since a submodule £ c E(u)®A[u]™ is A[u]-projective of rank n if and only if
E(u)*A[u]™/€ is A-projective (see [Zhul7, Lemma 1.1.5]) each subfunctor is rep-
resented by a subfunctor of the grassmannian classifying projective A-submodules
of E(u) *A[u]"/E(u)®Alu]™, which shows the ind-representability of Grgy,,.

For general G one chooses a faithful representation into GL,, and, using [Zhul7,
1.2.6], identifies Grg as a closed sub-indscheme of Grgy,, .

S

Lemma 4.3. For any O-algebra A set Alu]p,, equal the E(u)-adic completion
of Alu]. Then the A-valued points of Grg functorially identify with isomorphism

classes of G-torsors on Spec A[u]E(u) together with a trivialisation after inverting
E(u). Similarly for A-valued points of Grg,; with E(u) replaced by (u—m;).

Proof. This follows from the Beauville-Laszlo gluing lemma [BL95]. d

4.4. If A is an F-algebra and n; € Zyq then, since E[u] is principal ideal domain,
the product of the quotient maps describes an isomorphism
Alu] L 17 Al

IT5o; (u —my)m B io1 (u—m)m

JE— JE—

In particular, this gives an isomorphism A[u]p,, = [Ti-; A[u](,_,) Where the com-
pletions are respectively taken against the ideals generated by E(u) and (u — 7;).
As a consequence, we obtain:

Corollary 4.5. There is an isomorphism
Grg®pFE = (GI"GJ X0 ... X0 GI"G75) ®o FE

written (E,¢) = (Ei,i)i=1,....e on A-valued points, so that
E®aru) Alul gy = [ 1€ ®apuy Alul,
i=1
with ¢ =T, ¢;-
4.6. The isomorphism in Corollary 4.5 has an alternative description. For any

(O-algebra A consider the open subsets

U; :SpecA[u,H(u—ﬂj)_l], Vi = Spec Alu, (u—-m;) "]

J#i
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of Spec A[u]. Then V; = Uj.; U;, V; nU; = Spec Alu, E(u)™'] and, if A is an E-
algebra, then
SpecA[u] = UUZ = ‘/z U Ui

Then €&; is the G-torsor obtained by glueing £
¢ to U;n'V; = Spec A[u, E(u)™!]

U; and 50

v, along the restriction of

Notation 4.7. For A € X, (T') write &y ; for the O-valued point
(€% (u-m;)*) € Gre,
where £° denotes the trivial G-torsor on Spec O[u] and (u—m;)* denotes the auto-

morphism of 50|Speco[u,E(u)71] induced by multiplication by A(u-m;) € G(O[u, E(u)™]).
We then define the locally closed subscheme

Grg,ix c Grg,

as the orbit of £, ; under the action of the group scheme L*G with A-valued points
G(Afu]).

Lemma 4.8. For each A € X.(T) and i =1,...,e the morphism G - Grg,; given
by g = g€x,; induces a closed immersion

G/PA — GI"GJ-

where
Py ={g G |limeo A(t)"'g\(t) emists}

Equivalently, Py is the parabolic subgroup of G generated by T and the roots sub-
groups Uyv for ¥ € RY with {a¥,\) <0.

Proof. The A-points of the stabiliser in G of £, consists of those g € G(A) for which
Mu - ;) g (u —1;) € G(A[u]). Therefore, this stabiliser is precisely Py and we
obtain a monomorphism G/Py — Grg,;. Since Py is a parabolic subgroup of G
the quotient G/Pj is proper over O. Thus G/Py — Grg, is also proper. Proper
monomorphisms are closed immersions [Stal7, 04X V] so the lemma follows. (]

Definition 4.9. For p = (p1,. .., fte) with p; € X, (T') set M, c Grg equal to the
scheme theoretic image of the composite

(G/PH1 X0 ... X0 G/Pue) ®o FE — (GTG,I X0 ... X0 GI‘G,e) Qo ExGrg®nFE - Grg
(the isomorphism coming from Lemma 4.5).

4.10. The A-valued points of G/Py classify filtrations of type A on the trivial G-
torsor over Spec A (i.e exact tensor functors from the category of representations
of G on finite free O-modules V into the category of filtrations on V' by A-modules
with projective graded pieces). From this point of view:

e The closed immersion G/Py — Grg,; from Lemma 4.8 sends a filtration Fil®
onto
Fil’(G ®a Alu](, )

J—

where the filtration on G ®4 Afu],,_, is the tensor product of of Fil* with
the (u — m;)-adic filtration on A[u]

(u-m)"
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e The closed immersion (G/P,, xo ...xo G/P,,) - Grg from Definition 4.9
sends an A-valued point corresponding to an e-tuple of filtrations (Fil});
onto o

Fil’(G @ Alu] g,,)
where the filtration on G ® 4 mE(u) 2, G®a mu_m is the i-fold
[Eo\duct of the tensor product of Fil} and the (u — m;)-adic filtration on
A[U] (u-m)"*

5. VARIOUS SCHUBERT VARIETIES

Here we introduce some variants on the usual notation of Schubert varieties
inside the affine grassmannian.

Notation 5.1. For A € X, (T) write &, r € Grg(F) for the point corresponding to
(€9, u*). Thus

ExF=E0i®0F
with £, ; as defined in Notation 4.7 and for any i = 1,...,e. We also write Grg xr =
Grg i ®oF for any i =1,...,e. Equivalently, Grg xr is the L*G-orbit of &y p.

For A € X,.(T) the Schubert variety Grg <ar € Grg ®oF is usually defined as the
closure of Grg »; ®0F (for any i =1,...,¢e). Then Grg < is reduced, irreducible,
and can be expressed as

Grg.aor= U Grg v r
N<A
We would like to use Grg <y, +...+u.,F as an ambient space in which to study M, ®o
F. However, the containment of M, ®o F in Grg <y +...+u.,F is unclear due to
both varieties construction as a closure. For this reason we instead use a moduli
construction which is close to (and conjectured to equal) Grg <x F-

Definition 5.2. Let V be a free O-module. Any A-valued point of Grg corresponds
to a projective A[u]-submodule of V ®¢ A[u, E(u)™!] and so, for any e-tuple of
integers (n;), we may consider the closed subfunctor Yél(j(t;/)) c Grgr(y) consisting
of those & for which

(5.3) Ec ﬁ(u—ﬂ'i)"’iV R0 Alu]

i=1
If = (p1,. .., pte) with p; € X, (T) dominant then define
Yoeu =N (Gra Xx,GrGLmYéﬁ({‘éf’)" ,/m))
X
where wg € W is the longest element and the intersection runs over irreducible
algebraic representations y : G - GL(V) of highest weight x".

Example 5.4. Suppose that G = GL,, so that A-valued points of Grg identify with
projective A[u]-submodules € c A[u, E(u)~']". If

= (s )y p=(Rin 22 fin)
then £ € Yg <, ®0 F then

n
J

(5.5) /J\(g) c Ii(u _ m)m,m.“mi,n—jﬂA[u]( )
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for all j=1,...,n. Indeed, if x : G — GL(V') equals the j-th exterior power of the
standard representation, then the induced morphism Grg - Grgp(yv) sends € onto
A (&) and so

2((wox" i)
X»GTGL(WYGL(VO)

is the closed subscheme consisting of £ as in (5.5). This is because
x'=(1,...,1,0,...,0)

———
j ones

GYG X

and so (wox", i) = tin+. . i n—j+1. In fact, since every highest weight representa-
tion of GL,, is a quotient of tensor products of these exterior powers representations,
conditions (5.5) suffice to determine Y <.

The following lemma describes the basic properties of Y <, that we need.

Lemma 5.6. Let i1, ..., pe € Xi(T) be dominant. Then Yo <, ®0 F only depends
Upon p1 + ... + e, contains Grg u,+...+p, F 05 an open subset, and

Yo u®0 Frea= | Grgnr

ASp1+. H e

Proof. That Yz <, ® I only depends upon f1 +. .. + fie is clear from the definition.
It is also clear from the definition that Y¢ <, contains £y € Grg(F) if and only if
A< g + ...+ fe. This implies

(YG,S},L ®0 IE‘)red = U GrG,A,]F'

ASpg+o e
It remains to show Greg ., +... 4. F is open in Yg <, ® oF. This will follow if Yg <, ® 0 F
is reduced at &, +.. +4.,F, Which can be achieved by a simple tangent space compu-
tation identifying the tangent space of Yg <, ®0 F at £, 4. 44, F With the tangent
space of Grg uy+..+p, - See [KMW18, §3]. O

Remark 5.7. The construction of Yg ¢, ®» F was proposed in [FM99] as a moduli
interpretation of Grg <, +...+u. ,r. However, it is an open question whether Yg ¢, ®0
F = Gra,<pu +..+p. F (equivalently, whether Yo <u®oF is reduced). The equality is
known when G = SL,, and F has characteristic zero, see [KMW18].

Lemma 5.8. Under the isomorphism Grg ®oF = (Grg1xo...xo Grg,.) ®0 E
from Lemma 4.5 we have

Yo<u®0 E=(Yoi<u X0 --- %0 Yg,e<u.) ®0 E
where Y i <p, € Gra,; is defined as a special case of Definition 5.2.

Proof. The lemma reduces to showing that, for any tuple (n;) of integers and any
finite free O-module V,

>(n;) _ >n >ne
YGL(V) ®o E = (YGLEV),l X0 .- %0 YGL(V),e) ®o L

under the identification from Lemma 4.5. This is clear since if A is an E-algebra
then the isomorphism Alu]p, = [Ti-; A[u],_, identifies the ideal generated by

[T(u—-m;)™ with the product of the ideals generated by (u —m;)™. O
The reason we introduce Definition 5.2 is because it easily allows us to prove:

Proposition 5.9. For = (p1,..., te) with p; € X (T') dominant we have M, c
YG,S}L'
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Proof. It suffices to show M, ®» E c Yz <, because Yz <, is closed in Grg. By
Lemma 5.8 we are reduced to showing that G/P,, - Grg,; factors through Y ; <, .
Since Yg,i,<, is G-stable it is enough to show &, ; € Yg i <u,, and this is clear. [

6. APPROXIMATIONS VIA Gry,

When G = GL,, the spaces M, ®cF were accessed in [Bar21, §7] by constructing a
subfunctor Gry, ¢ Grg with M, ¢ Gry,. The subfunctor Gry, consists of £ € Grg (A)
which, when viewed as projective A[u]-modules of A((u))", satisfy

E(u)v(€)cé&
d

for v the operator on A((u))" given coordinate-wise via 7-. If £ is generated by
(e1,...,en)X for a matrix X € GL,,(A((w))) then this is equivalent to asking that

d
E(u)X’ld—(X) e Mat(A[[u]])
u
In this section we show how to extend this construction to general G.

6.1. The following construction works when G = SpecO¢ is any affine algebraic
group over O. Set g = Lie(G). In what follows we will interpret elements of g as
derivations Og — O over O where Og acts on O via the counit map e: Og — O.
The logarithmic derivative can then be described as a map
dlog : G(B) - g ®z QB/O

for any ring B. To define this map identify Qg0 = L(G)" ®0 O¢ where L(G)
denotes the translation invariant derivations Og — Og. Then

9®0 Qgjo = Homo (L(G), 9) ®0 Og

and the map £(G) — g given by composition with the counit e defines a canonical
global section. For any g € G(B) define dlog(g) as the image of this section under
900 9* Qa0 ~ 3®0 Qpjo. If Ais any O-algebra and B = A[u, E(u)™'] then we
obtain an element

dlog, (9) € g ®0 Alu, E(u)™"]
by evaluating dlog(g) at the derivation - : A[u, E(u)™'] - A[u, E(u)™']. This
construction is functorial in G.

The following example motivates us calling this construction the logarithmic
derivative.

Example 6.2. Let G = GL,, with coordinates T;; and write ¢ : Og — Og for the

coinverse map. Write ﬁ for the element of g sending 7;; ~ 1 and zero on all other
ij

coordinates. We claim that the section

(6.3) Z d;‘ ® (Z L(Tim)d(ij)) €g®0 Qg0

coincides with the map £(G) — g given by composition with the counit. If A :
T;j = >, Ty ® Ty; is the comultiplication map then £(G) — g has an inverse given
by d — (id®d) o A (see for example [Mill7, 12.24]). Therefore we can check the
claim by evaluating Y, ¢(Tim )d(Tyn;) at (id®d%k ) o A. Since

T ifj=k

0 otherwise

d
id
(i ®dT

)OAZijl—){
Lk
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this evaluation is equal to

Zm L(Tim)Tml if ] =k
0 if j#k

Since composing (¢ ®id) o A with multiplication Og ® Og - O¢g equals the counit e
it follows that the above evaluation is 1 if 45 = [k and zero otherwise. This verifies
our claim. If g = (g;;) € G(B) has inverse g~ = (h;;) then the image of (6.3) in
g® QB/(’) is

dlog(g) = Z d;l",, ® (Z himd(gmj))

If B = A[u, E(u)™'] and we identify g = Mat,,x,(O) via %M then evaluating dlog(g)
at % yields dlog,, (g) = g‘lﬁ(g).

Remark 6.4. If G is a flat and finite type over O then dlog, can alternatively
be constructed using the Tannakian viewpoint. As explained in e.g. [Lev15], an
element of g ®» A[u] is equivalent to a collection of endomorphisms Xy for all
representations G — GL(V) of G on finite free O-modules which are compatible
with exact sequences and satisfy Xv,gv, = Xy, ® 1 +1® Xy,. Example 6.2 shows
that dlog, (g) corresponds to the rule sending a representation p onto

29 (p(9)) € Bnd(V)

(the compatibility of this rule with exact sequences and tensor products being an
easy computation).

Example 6.5. If G = G, with coordinate T then write d% for the element of g
sending T~ 1. In this case the section

d
ﬁ ® d(T) €Eg®o QG/O

coincides with the map £(G) — g given by composition with the counit and so if
g € G4(B) then

dlog(g) = - © (D)
If B = A[u, E(u)™'] and we identify g = O via -k it follows that dlog, (g) = -=(g).
The next lemma contains what we will need to compute with dlog,, (-).
Lemma 6.6. (1) For g,h e G(Alu, E(u)™']) we have
dlog, (gh) = Ad(h™") dlog,(g) + dlog, (h)

where Ad denotes the adjoint action of G on g.

(2) dlog,(g) =0 for g € G(A)
(8) udlog, (u*) € Lie(T) for A€ X.(T).

Proof. By choosing a faithful representation of G all these identities reduce to the
case of GL,,, where they are clear given the interpretation of dlog, from Exam-
ple 6.2. [
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Definition 6.7. Define Grg c Grg to be the subfunctor consisting of those (€,¢) €
Grg(A) for which there exist an fppf cover A - A’ trivialising £ so that, if ¢ x 4p,)
A'[u] is given by left multiplication by g € G(A'[u, E(u)~']), then

E(u)dlog,(g) € g®0 Alu]
This is a closed subfunctor since A[u, E(u)™']/A[u] is a projective A-module. When

G = GL,, this coincides with the subfunctor defined in [Bar2l, 7.4]. Lemma 6.6
shows that Gry, is also G-stable.

Proposition 6.8. M, c Grg for any p=(p1,. .., pte).

Proof. Since Grg is a closed subfunctor it suffices to show that M, ®c E c Gr(v;. For
this observe that, under the identification Grg ® o E 2 (Grg,1 xo ... x0 Grg,e)®0E,
one has
Grg ®okFE = (Grrg1 X0 ... XO Grgye) ®o F

where Grg)i is defined analogously to Grg with the condition F(u)dlog,(g) €
g ®0 A[u] replaced by (u —m;)dlog,(g) € g®o A[u]. We are therefore reduced to
showing that the closed immersions G/Py — Grg,; induced by any A € X, (T) factor
through Grg’i, and this follows from Lemma 6.6. (]

7. COMPUTATIONS IN Gry,

In this section we show that the inclusion M, c Grg induces a reasonable topo-
logical description of M, ® F provided p is sufficiently small relative to the char-
acteristic of F. As with the previous section, this extend results from [Bar21, §7]
beyond G = GL,,.

Proposition 7.1. Suppose that A € X, (T) is dominant. If charF >0 then assume
that
(¥, A) <charF+e-1
for every positive root «¥. Then
GreF Xarg Gryy
is smooth and irreducible of dimension
> min{e, (o, A)}
aeR*
Proof. As in the previous section we write g = Lie(G). Let t = Lie(T') and write
g=te @ Jav
aVeRY
for the root decomposition of g. For each a¥ € RY we have the associated root
homomorphism z,v : G, - G which induces an identification dzsv : G, — gav. See
for example [Jan03, 1.2].

Step 1. We begin by recalling a standard open cover of G/Py. Let U denote the
image of the morphism
[1 A'->G
(aV,\)>0

given by (aav)av = [ Tav(aqv) (the product taken in an arbitrary, but fixed,
order). Then U is a closed subgroup of G and the induced morphism U — G/P)
is an open immersion. Furthermore, the W-translates of the image of U form an
open cover of G/Py. See [Jan03, 1.10] for more details.
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Step 2. Let Uy denote the image of the morphism

H A<av’)\> N L+G
(aV,\)>0

given by (@av,0,0a,1;-- 00 (av 2)-1)av = [lav Tav (X, aqv iu') (again the product
is taken in an arbitrary, but fixed, order). Then the morphism Uy — Grgar
given by g ~ gu” is an open immersion whose W-translates cover Grgar. To
see this note first that Uy — Grg i is a monomorphism. Secondly, note that
Uy — Grg,\ r factors through the preimage of U under the morphism ¢ : Grg, \r —
G/Py sending gu® onto g modulo u. Thirdly, note that ¢ '(U) is smooth and
irreducible of dimension Y g+ (¥, A) = (2pY, ) (because the same is known to be
true of Grg ap, see for example [Zhul7, 2.1.5]). Therefore Uy — ¢~*(U), being a
monomorphism between integral schemes of the same dimension, is an isomorphism
(because monomorphisms are unramified [Stal7, 02GE] and unramified morphisms
are etale locally closed immersions [Liu02, 4.11]).

Step 3. We are going to compute the closed subscheme Uy xqy Grg. By definition
g € Ux(A) is contained in this closed subscheme if and only if

u® dlog, (gu’) € g®o Alu]
Lemma 6.6 shows this is equivalent to asking that
u® Ad(u™) dlog, (9) € 3 90 Alu]
It will therefore be necessary to compute dlog,(g) and we will do this using the

following two observations:

o If g = z,v(a) for a € A[u] then dlog,(g) = dxav(%a). This follows from
Example 6.5 and the functoriality of dlog,,.
o If a¥ + Y #0 then

Ad(zav(a))dzgv (b) = dzgv(b) + Y. cijdiavsjpv(a’t’)
i,7>0

for some c;; € Z independent of a and b. This can be seen by passing the
formula

TV (a).’L‘Bv(b)xav (a)_l =Tpv (b) H TiaV+jBY (cijaibj)
4,7>0

found in e.g. [Jan03, 1.2.(5)] to the Lie algebra.

Step 4. Lemma 6.6 shows that dlog,, (g v (b)) = Ad(zgv(-b)) dlog, (g)+dlog, (zv(b)).
This, together with the two bullet points from Step 3, allows an inductive compu-
tation of dlog, (g) for g = IT(av,A)>0 Tav (@av) With aqv € A[u]. We see that dlog, (g)
can be expressed as a sum, over v with (7", A} > 0, of terms

dI,Yv (%awv + nyv)

where C,v is a Z-linear combination of products of the a,v and %(aav) for those
roots ¥ with (a,A) > 0 and (vV - a",A) > 0. We can therefore write C,v =
Cyvo+Cyiu+ C,Yv,gu2 +... with each Cyv; = Cyv i(aqv ;) a polynomial in the
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coefficients of the a,v for o with 0 < (a¥, ) < (y¥, A). These polynomials have Z-
coefficients and depend only on the order in which the product defining ¢ is taken.
It follows that u® Ad(u~*) dlog, (¢) can likewise be expressed as a sum of the terms

e—(~V d
(7.2) w0 N (%a.yv + cvv)

The assumption that (vY,A) — e + 1 < charF means there exist unique polynomials
D.v ;=D i(aqv,) in the coefficients of the a, for a¥ with 0 < (a¥,A) < (7", A) so
that if

2 VoA)—e+1
Dwv = va71u+D7v72u +...0+ D,Yv’(,yv’)\>,e+1u<’y A-ex

then %Dwv = C,,v modulo uly A merd, Again these polynomials depend only on the
order of the product defining g. Thus (7.2) is contained in g,v ®» A[u] if and only
if

ayv = Do € A+ ul7 N Ay
It follows that there is an isomorphism

[T A0 S0y <, Gry

{(7V,A)>0

sending (a,v ;),v onto

v _ v _
77 A)-1 +a7v,2u(”’ A)=2

max{1,{(vY,\)}-e+1
oot a,yv,min{&(,yv’)\),},lu Ly ) + D’YV)

H TV (&0 + avv)lu(
’Y\/
This shows that Uy xaq Grg is smooth of the claimed dimension.

Step 5. It remains to show that Grg aF XGre Grg is irreducible. For this recall the
action of G, on Grg via loop rotations: if t € A* and (€,t) € Grg 4 then

t-(E,0) = (x; €, x1)

where z; is the automorphism of Spec A[u] given by u ~ tu. This action stabilises
both Grg, r and Grg. Therefore, smoothness of Grg a7 Xarg Grg ensures it is an
affine bundle over its G,,-fixed points, see [Mil17, Theorem 13.47]. Since the fixed
point locus in Grg,ar is the G-orbit of £y , and since this is contained in Gr(v;, we
conclude that the fixed point locus of Grg » r Xarg Gry is also this G-orbit. As this
orbit is irreducible the same is true for Grg i r Xcre Grg. ([l

8. NAIVE CYCLE IDENTITIES

Here we use Proposition 7.1 to produce a basic description of the cycles associated
to MH Qo F.

Definition 8.1. A d-dimensional cycle on any Noetherian (ind)-scheme X is a Z-
linear combination of integral closed subschemes in X of dimension d. The group
of all such cycles is denoted Z4(X). If F is any coherent sheaf on X we write

[F] =ZZ:m(Z,f)[Z]

where the sum runs over d-dimensional integral closed subschemes Z in X and
m(Z,Y) denotes the Oz ¢-dimension of F¢ for £ € Z the generic point. If i: Y ¢ X
is a closed subscheme then we set [Y] = [1.Oy]. If X is a scheme then [Stal7, 02S9]
shows that Z;(X) can alternatively be defined as the cokernel of the map

Ky(Coheg-1(X)) » Ko(Cohey(X))
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where Coh.y(X) denotes the category of coherent sheaves on X with support of
dimension < d. Then [F] coincides with the image of the class of F.

Definition 8.2. For A € X, (T) define Cy c Grg ®oF as the closure of Grg a r XGre GrV.
Proposition 7.1 ensures that Cy is an integral closed subscheme of dimension

> min{e, (¥, \)}

positive aV
provided (a¥,A) < charF + e - 1 for every positive root a".

Proposition 8.3. Assume that G admits a twisting element p € X, (T') and suppose
that p= (1, .., pe) with p; € X, (T) strictly dominant. If charF > 0 assume also
that

> (a¥, ;) < charF +e -1

3

for every positive root «. Then there exists my € Z so that as e|R*|-dimensional
cycles in Grg o

[M, ®0F] = Z mA[Cxsep]

)\I

with the sum running over dominant A < pi+. . .+pe—ep. Furthermore, my, +. +u.—ep =
1.

Later on we will give the m a representation theoretic interpretation (see The-
orem 12.1).

Proof. Propositions 6.8 and 5.9 ensures M, ®o F factors through Grg and Yg <u-
Lemma 5.6 implies (Y, <y ®0 F)red = Uacpy+...+p0—ep GTG A4ep,r and so
(84) (M/,J, ®0 IE‘l)red c U GrG,)\+ep,IF XGrg Gr(v; c U C)\+ep

ASp1+...He—€P AL+ A e —€P
These unions run over A which are not necessarily dominant. To show that the
containment still holds with the union running over dominant A we use the as-
sumption that each p; is strictly dominant. This ensures that dim G/P,, = |R| and
so dim M, ® IF = e|R*|. Thus

dim Cyyep = Z min{e, (a’, A +ep)} <dim M, ®o F

positive aV
with equality if and only if (a¥, X + ep) > e for every positive a¥. Notice that
(@Y, A+ ep) > e for every positive root a” (equivalently every simple root) if and
only if A is dominant, because {(«", p) = 1 whenever " is simple. Thus, (8.4) can
be refined to:

(Mu ®o IE‘)rcd c UC)\+ep

with the union running over dominant A < 1 + ...+ pe — ep. In other words,

[MH K0 F] = ;m/\[c)\+ep]

as desired. To finish the proof we have to m,+.. +u.-cp = 1, and for this it suffices
to show Cu 4. +u. € M, ®o I and this this closed immersion becomes an open
immersion after restricting to an open subset of C,,, 1. 4, . Recall from Lemma 5.6
that Grg,u,+...+p.,F is open in Yg <, ®0 F. Therefore,

U= Mu XGrg GrG,p1+...+pc,IF

is open in M, ®o . It is also non-empty because it is easy to see that &, +. 4. F €
M,,. Therefore, U has dimension equal dim M, ®o F. On the other hand U is
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a closed subscheme of Grg,;,+...+pu.,F XGrg GrYV. We saw in Proposition 7.1 that
Gr@, g+ tpie,F XCro GrY is smooth and irreducible of the same dimension. Thus,
U = Grg,ui+...4p0,F XGre GrY. As Ciuy+..+u. is the closure of U we conclude that
Cur4.tp. © M, ®o IF, and that this inclusion is an isomorphism over an open
subset. [l

9. IRREDUCIBILITY

Theorem 9.1. Assume that G contains a twisting element p € X, (T) and suppose
that A € X, (T) is dominant. If charF >0 then assume also that

(oY, A+ep) <charF+e-1
for every positive root «¥. Then, as cycles

[M(x+p,p,....0) ®0 F] = [Crsep]

In other words, M(xp.p,....p) ®0 F is irreducible and generically reduced.

.....

In order to prove the theorem we need the following lemma:

Lemma 9.2. Suppose p = (u1,- .-, fte) with each u; € X*(T) dominant. Then any
F-valued point of M, (F) can be expressed as

(€, g1uM gau")
for some g1 € G,go € L"G and n < g + ... + le.

Proof. Write Grg_l) for the affine grassmannian defined as in Definition 4.1, but
with the e-tuple (71,...,7.) replaced by the e — 1-tuple (ma,...,m.). Thus, the
A-points of Gr(Gefl) classify isomorphism classes of pairs (€,¢) with £ a G-torsor on
Alu] and ¢ a trivialisation over Spec A[u, [15_o(u - m;)™*]. We have a morphism

mo - G XO Grgfl) hd GI‘G

(whose dependence on u; we suppress from the notation) given by (g,&,t) —
(€, 9(u—-m)" or). We will prove the lemma by showing that every closed point of

M,, is contained in the image of G xo Yc(;e;(llz2 _____ sy (Where Y((;:(llL _____ ey € Gr(cf_l)
is defined as in Definition 5.2) under my. Using Lemma 5.6 we see this gives the
desired result.
First observe that, under the identifications of Lemma 4.5, m( induces a surjec-
tion
(G XO Grg_l)) ®o F - (G/Pm XO GrG’Q XO ... X0 Grgye) ®o F

This is the case because (€,1) € Grg ®o F is contained in the right-hand side if and
only if there is a g € G such that (u—m) g ot extends to a trivialisation of £ on
Uy = Spec Alu, 1.1 (v —7;)7"']. In particular, this means that any E-valued point
of M,, is mapped onto by some (g,&,¢) € G ®0 Grg_l) under my.

We will be done if we can show that (£,¢) € YC(;E;(IIL .oy Choose a represen-

tation p: G — GL(V) of highest weight x and let £” ¢ V ® o E[u, [1;.1(u - m;)7]
correspond to the image of (&,¢) under Gr(cffl) - Grgg(l‘)/). We have to show

(9.3) EP c [](u - m;) o1y @6 Elu]

=2
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Proposition 6.8 implies (€, g(u —m )" ot) € Y ¢, and so

p(9) (= m) 1 (€7) € [T (=) 00OV 86 Blu] =

i=1
(u—m)P° (EP) c T (u - ;)T COmi)y @ Elu] =
i=1
E c[(u- 7)Y @ Blu, (u-m1) 7]
i=2
From this (9.3) follows, since we already know that £” ¢ V ®o E[u, [T;.q (u—m;)71].

O

Proof of Theorem 9.1. In view of Proposition 8.3, the theorem will follow if we can
show that Cxriep ¢ M(xipp,....p) ®0 F for any dominant A" < A. We will do this by
choosing, for each X" < X, an F-valued point in Cy/;e, which will not be contained in
Mxip.p,....p) because it cannot be expressed in the form described by Lemma 9.2.

Step 1. Fix a dominant A’ < X\ and consider
(9.4) E:= [ wav(bavul® A *MEx i pr
aVv>0
for some b,v € F. We claim that the b,v can be chosen so that
(1) Ee C)\/Jrep
(2) bav #0 for all simple .

The calculations from Step 4 in the proof of Proposition 7.1 show that such bgv
exist.

Step 2. Assume for a contradiction that £ € M(y,,,, .. ). Lemma 9.2 implies

u—)\+pg H Zav (baVu(a A +p>)g)\’+ep,]F € GrG,n,F
a\/
for some g € G and some dominant 77 < (e —1)p. As A+ p is dominant we have
uwPB uMP € L*G for B~ the Borel opposite to B. Since also G = Uy B wU
for U c B the unipotent subgroup, we can assume that g = wb for w; e W and be U.
Thus

(95) u’)"pwlb H TV (bav u(av,)\’er) )5)\/+ep7[p € GrG,n,]F
a\/

Now recall from the proof of Proposition 7.1 the action of G,, on Grg via loop
rotations. This induces an action of L*T x G, on Grg (where G,,, acts on L*T in
this semi-direct product via t-x(u) = z(tu)). Each £ € X, (T) induces a 1-parameter
subgroup G,,, > L™T x G, via (t — £(t),t). The resulting action of G,, on Grg
stabilises Grg,, r and, if 7 is strictly dominant, the fixed points are the &, r for
w e W. As a consequence, if we take £ = A + p, then (9.5) gives

: -A- Y+
limyot-u pwlbnxav (bavu(a ’ p))é}\@emp = Ews(n),F
a\/
for some wy € W. However
. \ !’
t-u A pwle xav(bavu<°‘ A +p>)€)\/+6p,ﬁ =
a\/

—\—= V oy V oy
U A pwlbl H I’av(bavu<a A +p)t(a A +p>)5)\/+ep7ﬂr
(X\/
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and so, since (a¥, " + p) > 0 due to the dominance of X', we deduce that

w1 bg)\’+ep,]F = g)\+p+w2 (n),F

Since X' + ep is strictly dominant it follows that the image of b in G/B~ is T-
stable. As U — G/B~ is an open immersion we conclude that b = 1 and that
w1 (N +ep) =X+ p+wa(n).

Step 4. Substituting b =1 and w1 (N +ep) = A+ p+wa(n) into (9.5) gives

(9.6) H Tov (bavu(av’w3(n)_(e_1)p>)61113(77),]17 € G, ¥

for ws = wilws. Since (¥, w3(n) — (e —1)p) <0 it follows that

l_v[ Ty (bavu(c‘ ,ws(n)—(e—l)p))gws(m]F c GTZ’F nCra ., F

where G‘rr’C’;JF is the opposite Schubert cell defined as the L™ G-orbit of &, r where
L=G is the group scheme with A-valued points given by G(A[u']). It follows
from [Zhul7, 2.3.3] that [T, Zav (bavu<"‘v’w3(’7)’(e’1)p))£w3(,7)7]p is contained in the
G-orbit of &, r. In particular, [T,v qv (bavumv’wf’(”)‘(e‘l)p))Ew?’(n)’]p is fixed under
the action of G,, by loop rotations.

Step 5. For the final step notice that

H Loy (bavu(av’w3(n)_(6_l)p))&ug(n),m _ uws(n)—(e—l)pbog(e_l)p

where by = [T,vs0Za(ba) € B. That this element is fixed by loop rotations is the
same as saying that yws(M-(e=Dpgws(n)=(e=1pp (e=)p ¢ yws(m)-(e-Dpp 4 (e-Dr+qG
for ¢ the variable of G,,. This implies that

Ad(bg") Dy (1) € Ad(u“D?)g[[u]]

for D, the derivative of w3(n) — (e -1)p : G,, - T at the identity. Notice that
Ad(by') D, (t) € g so we must actually have

Ad(bg")Dy(t) et®d @ gav
aV<0
(recall t = Lie((7T'))). On the other hand, passing from the identity in [Jan03, II.1.3]
to the Lie algebra and inducting shows that if ¢y € t then Ad(by')to - to can be
expressed as a sum over 7Y > 0 of terms

dﬁyv(bvvd’yv(to) + D’Y)

where dv" denotes the derivate of v" and D, is a Z-linear combination of products
of bav for 0 < a" <~Y. Since byv # 0 for each simple v we must have D, (t) =0, i.e
wz(n) = (e=1)p. Thus wz =1 (i.e. wy =wq) and n = (e-1)p, and so A+p = wi (A +p).
Since both A and )\ are dominant we must have w; = 1 and so A = \'. This
contradicts the fact that A’ < A and finishes the proof. (I
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10. EQUIVARIANT SHEAVES AND THEIR CYCLES

Our goal is now to give the coefficients appearing in Proposition 8.3 a represen-
tation theoretic meaning. To do this we will relate these cycle identities to relations
between global sections of line bundles on the M,,.

10.1. If X is a finite type F-scheme and equipped with an action of the torus T,
then we write KI' (X) for the Grothendieck group of the category of T-equivariant
coherent sheaves on X. If X is additionally proper over F then the Euler charac-
teristic [F] + ¥50(=1) [H*(X,F)] defines a homomorphism

X Kq (X) » R(T)

where R(T) = Z[ X *(T)] denotes the Grothendieck group of algebraic T-representations
(in which multiplication is given by the tensor product). For " € X, (T) we write
e(a") for its class in R(T') and for V € R(T) we write Vv € Z for the multiplicity

of e(a) in V.

Definition 10.2. Suppose that d > 0.
e Define KI'(X)<q as the Grothendieck group of the category of T-equivariant
coherent sheaves on X with support of dimension < d.
e Let V = (V},)ns0 be a sequence of elements in R(T"). We say V is polynomial
of degree < d if there exists a polynomial P(x) € Q[z] of degree < d so that
Z |Vn,a\/| < P(n)

aveX*(T)
for all n > 0 (here |- | denotes the usual absolute value).

Notice that if each V;, is effective (i.e. is the class of a T-representation V;, in R(T"))
then V is polynomial if and only if the dimensions of V,, are bounded by the value
at n of a polynomial. However the above definition also allows us to extend this
notion to elements which are not necessarily effective.

Remark 10.3. Note that there are homomorphisms K{ (X)<q - KI'(X) which are
not typically injective.

Lemma 10.4. If V = (V;,)ns0 and W = (W, )nso are polynomial of degree < d then
(Vi + Wi)nso and (Vi,Wy )nso are also polynomial of degree < d.

Proof. Thisis clear since Y v [Vi,ov #Whav] € Xav [Viav [+ X av [Wh,av| and similarly
Yov | 2 pvinveay Voo Wi | € Zgv v Vi gr [Wa vl = (v Vapv[) (S [V )

Lemma 10.5. Suppose that X is a proper F-scheme of finite type equipped with
a T-equivariant ample line bundle L and F € KOT(X) 18 contained in the image of
im KT (X)<q. Then

X(F®[L"]) e R(T)
is polynomial of degree < d.
Proof. Using Lemma 10.4 we can assume that F is the class of a T-equivariant

sheaf G on X with support of dimension < d. Since L is ample x([G ® £®"]) equals
the class of H°(X,G ® £L®") in R(T) for sufficiently large n. Since the dimension
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of HY(X,G ® L") is for sufficiently large n the value at n of a polynomial P(z) of
degree equal the support of G it follows that for all n >0

Y IX(G® LT )ov| =D (GO L) ov < P(n) +C
for a constant C >> 0. O

Proposition 10.6. Let F be a T-equivariant coherent sheaf on X with support of
dimension < d and let

[F]= ;nz[oz] € Za(X)

be the associated d-dimensional cycle. Assume that X is equipped with an ample
T-equivariant line bundle £ and that ny > 0 implies Z is T-stable. Then there are
qz € Lo and 0y, € X*(T) so that

nz

(Fo L) -3 (z (63, )x(£H z>) ¢ R(T)

i=1
is polynomial of degree < d.

Proof. We induct on the number of ny > 0. If this is zero then the class of F has
support of dimension < d and so its class in K (X) is contained in im KJ (X )<41.
Lemma 10.5 therefore implies x(F ® £L®™) is polynomial of degree < d, and the
proposition holds. Otherwise, write Z for the ideal sheaves corresponding to those
Z with nz > 0. By assumption each such Z is T-stable and so IIZV is a T-equivariant
coherent sheaf for any N > 1. For IV sufficiently large the support of IJZV F does not
contain Z (see [Stal7, 0Y19]) and so the inductive hypothesis holds for ZY F. By
applying Lemma 10.5 to the identity

[F] =27 F1+[F/Z] F]

in KI'(X) we see that the proposition will hold if it holds for F/Z2 F.

Since F/I ]ZV F has support contained in Z we are reduced to proving the proposi-
tion when the support of F is a single irreducible component. Thus we can assume
Z = X and write [F] = n[Ox] in Z4(X). Since £ is ample there is an integer
q € Zsg so that F ® L®9 is generated by global sections. This gives a T-equivariant
surjection

Ve L !> F
with V = H°(X, F®L®?). Since T is abelian we can choose a T-equivariant filtration
. ViqcVicViqgc. .. Vo=V
with each graded piece of dimension one.

Claim. There exists ji,...,jn € Zso S0 that
[F1-2[Vj/ Vi ® L] € im K (X)<a1
i=1
Proof of Claim. Set F; equal the image in F of V;®L™. Then [F] = ¥ ez [Fj/Fjs1]
in KOT (X). For each j we also have a T-equivariant exact sequence

0-G;=>Vj/Vin® L = Fj[Fjua >0
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of coherent sheaves. Since V;/V;.1 ® L7 is locally free of rank one it follows that
exactly one of G; and F;/F;.1 has support of dimension < d and exactly one has
support equal to X. Thus

(7]~ > [Vi/ Vs ® L57]
supp F; [ Fj+1=X

== ) [G;]+ > [Fi/Fjr] €im K (X)<q

supp F;/Fjs1=X supp F; [ Fj1#+X

To finish the proof of the claim we just need to check that supp F;/F;+1 = X exactly
n times. This follows because in Zg(X) we have [V;/Vj.1 ® L&79] = [X] and so

[(F] = Zswpp 7,/ 7,00=x Vil Vi1 ® LZ7Y] = Tgupp 7, /7,0, -x [X] = n[X]. O

Applying Lemma 10.5 to the identity in the claim gives the proposition because
if 7 € X*(T') is the character through which T" acts on Vj,/Vj,+1 then x(V;/Vj.1 ®
£94-1) = e(6 ) (£340). 0

11. DETERMINANT LINE BUNDLES

11.1. In order to apply Proposition 10.6 to the identity of cycles established in
Proposition 8.3 we need to choose an equivariant line bundle on Grg. To do this
we consider the morphism

Ad: GI"G - GI‘GL(Q)

induced by the adjoint representation of G. Then Grgrg) is equipped with the
“determinantal” line bundle L4, defined by the property that its pull-back to
Spec A along a morphism corresponding to (£,:) € Grgprg)(A) is given by the
A-module

detA(u_Ng R0 A[u]/t(E)) ®a detA(u_Ng ®o A[u]/g®o Alu])™*

for N sufficiently large that «(€) c u”~Ng®o A[u]. Note this is independent of the
choice of N. Then Lge is GL(g)-equivariant and is ample in the sense that its
restriction to any closed subscheme in Grgr(g) is ample. Therefore

Lag = Ad* Let
is G-equivariant and also ample.

Lemma 11.2. For X € X.(T) the group T acts on the fibre of Laq over Ex; via
the image of X under the homomorphism

p: X.(T) > X*(T)
gwen by A = Y vepv (@Y, A)aV.
Proof. This fibre is the rank one O-module
_ _ -1
(11.3) deto (u Ng[u]/Ad(u - 7ri)’\g[u]) ® detp (u Ng[u]/g[u])

A1 A2

for sufficiently large V. As an O-module we have

{a¥,X)

A
wNo[ul/ Ad(u-mglu] 2 @ D (u-m) ge

aVeRY n=—
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and t € T(O) acts on (u-7;)"gav by ¥ (t). Therefore, ¢ acts on Ay by [Tovep o (£){ N,
Similarly ¢ acts on Ay by [Tover ¥ (t)Y. We conclude that ¢ acts on (11.3) by
[T ¥ (@B =p(N)(1)
aVeR

as claimed. 0

Proposition 11.4. If u = (p1, ..., pe) with p; € X,.(T) dominant then
e
[H(M, @0 F, £3)] = [@IndF, (p(np))] € R(T)
i=1

for sufficiently large n > 0.

Proof. Since L,q is an ample line bundle on the flat O-scheme M, it follows that
H'(M, ®0F,L2}) = H (M, L) @0 F

for sufficiently large n. Therefore [H(M, ®0 F,L2})] is equal to the image of

[H°(M, ®0 E,L27)] under the specialisation map from [Jan03, 10.9]. Since this

map sends the class of ®F_; Indgw (p(np;)) viewed as a representation on an E-

vector space onto ®7_; Ind%v (p(np;)) viewed as a representation on an F-vector
space the proposition will follow if we can show

[HO(M, @0 E.£2)] = (@ ndf, (p(np0)] ¢ R(T)

Under the isomorphism Grg ®oF = (Grg,1 xo ... %0 Grg,e) ®0 E we have Loq =
Q71 i Laqi where Laq; is the restriction of L,q to Grg; and p; is the i-th projec-
tion. Therefore

Ladlm,e0r = Qp; (Lad,ila/p,, <o k)
i1
and so the Kunneth formula [Stal7, 0BED] identifies
HO(M/A ®o E,ES;) = ®HO(G/PM ®o Ev[’z?dn,i)
i=1

as G-representations. To finish the proof we just have to show

(11.5) HY(G/P,,,£2},) 2 nd§, (p(nu:))

ad,i
For this recall (see for example [Jan03, 5.12]) that the global sections of any G-
equivariant line bundle on G/P,,, are G-equivariantly isomorphic Indgw (n) where
n e X*(T) is the character through which 7" acts on the fibre over 1 € G/P,,. Since

1 is mapped onto &,, ; under the closed immersion G/P,, - Grg ; we deduce (11.5)
from Lemma 11.2. O

12. MAIN THEOREM
For any dominant AY € X*(T") write
W(AY) =Ind$G-(AY)

for B~ the Borel opposite to B. Likewise, for A € X,(T) we make sense of W (X),
now as a representation of G. The following is an alternative formulation of Theo-
rem 1.1.
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Theorem 12.1. Assume that G admits a twisting element p € X, (T) and let
= (1, pre) with p; € Xo(T) strictly dominant. If charF > 0 assume also that

(¥, p;) <charF+e-1
=1

?

for all positive roots a¥. Then

(M, @0 F] =Y mx[Mip,..p]

as e|R*|-dimensional cycles for my € Zso determined by the identity
[(81) W (ki =p)] =2 mA[W(N)]
i= )

in the Grothendieck group of G-representations.

Proof. We give the proof here using two representation theoretic propositions from
the next section (Propositions 13.2 and 13.4). Proposition 8.3 and Theorem 9.1
imply

[M# R IF] = Zn,\[M:\' ®o F]
where the sum suns over dominant A < p1 + ... + e — €p, A= A+p,p,-..,p), and
ny € Zso. We have to show that ny = my. Applying Proposition 10.6 to this identity
with £ equal to Laq gives 05 ; € X*(T) so that

na
X(LEF m,e0r) = . ) (0% )X (LS M5 00F)
A =1

is polynomial of degree < e|RY|. Since each p; is strictly dominant each P, equals
the opposite Borel B~ and so

W (p(np:)) = ndg, (p(nps))
Therefore Proposition 11.4 gives that

II W(p(nu)) =3 ni e(Ox )W (p(n(X + p)))W (p(np))*™

A =1

is polynomial of degree < e|RY|. In the next section we prove (see Proposition 13.2)
that

[TW () = 3 maW (p(n(A + p)))W (p(np))<™

i=1 )
is polynomial of degree < e¢|RY|, and so considering the difference gives that

>, (mx - nf 6(9X,i)) W (p(n(A+p)))W (p(np))~"

A i=1
is also polynomial of degree < e|RY|. In the next section we also prove (see Propo-
sition 13.4) that if X € R(T') are such that

EA: XoW (p(n(A+ p)W (p(np))*~

is polynomial of degree < e|RY| then X =0 for each \. Therefore

DN

mx = Ze(%) =0

i=1
for each . This implies n) = m) for each A which finishes the proof. O
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13. SOME REPRESENTATION THEORY

It remains to prove Proposition 13.2 and Proposition 13.4 which were used in
the proof of Theorem 9.1. For this set p¥ = % YaveRy aV. Then the Weyl character
formula asserts that for any dominant AY € X*(7T')

vy - 250

where A(XY) = ¥ e (=1 e(w(X\Y)) and this identity is occurring inside the
ring Z[ £ X*(T)]. See, for example, [Jan03, 5.10].

Lemma 13.1. If pe X*(T) is strictly dominant then

A(np’)
A(pY)

is a sequence of effective elements (i.e. Zsg-linear combinations of the e(a")) which
is polynomial in n of degree < |R*|.

W (np*) - e(p) R(T)

Proof. We first reduce to the case where X*(T') contains a twisting element py, in
the sense of Definition 2.2. The construction from [BG14, §5.3] produces a central
extension 1 - G,, - G - G — 1 such that if T c G is the preimage of T then X*(T)
contains such a twisting element. Being a central extension, the Weyl group of G
relative to T equals W. Therefore, the inclusion

X*(T) - X*(T)

maps A(\Y) onto A(XY) for X the character of T induced by A". As a result the
lemma holds for G if it holds for G
We can therefore assume there exists a twisting element p§ € X* (7). Then pj—p"

is W-invariant and so the Weyl character formula implies [W(p¥)] = W.
0

Now, for any A € X*(T) write L(\Y) for the G-equivariant line bundle on G/B~
on which the action of T on the fibre over the identity is given by AY. Then
L(py) admits a unique global section on which T acts by pg, and this induces a
T-equivariant injection

OG/B‘ ® p(\)/ g ['p\o’

Tensoring with £,v_,v produces a T-equivariant injection £,v_,v ® py = Lyv and
taking global sections yields a T-equivariant injection of W (u" —pg)®pg into W ().
In particular,

A(npY A(np”

(W (oY e () W (i3] = (W (i) ) < (10 ()] ep) )

(rg) (%)
is an effective element of R(T) for each n > 0. Since it is effective we can show
the sequence of elements is polynomial of degree < |R*| by showing that the dif-
ference between the dimensions of W(nu") and W(nu" — py) is a polynomial in n

of degree < |[R*|. But this follow from the Weyl dimension formula dim W(\Y) =
Moer, % since it shows both W (nu") and W(nu" - py) have dimension the
8
(Y a)

value at n of a degree |R*| polynomial with leading term nl'l [acer, vy O
v
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Proposition 13.2. Suppose that X, (T) contains a twisting element p and consider
strictly dominant py, ..., pe € Xo(T). If

[@W ()] = D[ (V)]
in the Grothendieck group of G-representations then
[T () = S ma¥ (p(n(3+ (D)W (p(mp)
is polynomial of degree < e|RY|.
Proof. The Weyl character formula (applied to @) yields the identity

< A(m) A\ +p)
= my ———

L6y =™ 40
in R(T). Multiplying by A(p)® gives

ﬁA(ui) = XA+ )G

The endomorphism of R(T) = Z[ X, (T)] induced by multiplication by n on X*(T)
is W-equivariant and so commutes with the formation of A()). Applying this
endomorphism to the previous identity gives

IjA(n,Ui) = z}\:m)\A(m()\ + p))A(np)efl

The homomorphism p: X, (T) - X*(T) induces a homomorphism R(T") - R(T)
which is again W-equivariant and so also commutes with the formation of A(X).

Therefore, applying this homomorphism and multiplying by (Z((Z vv))) gives

< e(p’)A(np(pi)) e(p")A(np(\ + p)) e(p") A(np(p)) ™"
O 1) B A 17y (")

in R(T). Write

< e(p)Alnp(pi)) 1 (1)) — () - EP D AMp(pi))
U= E(W( p(pi)) (W( p(pi)) Ay ))

- H (W (np(1:))) + Coom

3

for Cp; € R(T). Lemma 13.1 ensures that (W(np(ul)) - W) is poly-
nomial in n of degree < |R*| and so, since W (np(u;)) has dimension polynomial
in n of degree |RY|, it follows that C,, = (Cy.5)ns0 is polynomial of degree < e|RY|.
Similarly, each

e(p)A(p(A + p)) e(p”) A(np(p))
A(pY) A(pY)
with Cy = (Cxn)ns0 polynomial of degree < e|RY|. Combining these observations
with (13.3) gives that

ﬁmp(nm)) - X maW O+ )W (o)

= W(np(A + p))W (np(p))™" + o
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is polynomial of degree < e|RY| as desired. O

Proposition 13.4. Suppose that for strictly dominant AV, p" € X*(T') there are
Cy € R(T) such that

Z Chv W(n)\V)W(nﬂv)e_l
A

is polynomial of degree < e|RY|. Then Cy =0 for all \.

Proof. Since p" is strictly dominant the dimension of W9(nu") is polynomial in n
of degree |R*|. Therefore, we can assume e = 1. If the proposition does not hold
then we can choose a A with Cyv # 0 so that Cyy # 0 implies A\j < A",

Observation. Let ®,¥ > 0 be and let SV denote the set of simple roots. Then
there exists a degree |RY| polynomial Q(x) € Q[z] with positive leading term so
that for n > ¥ one has

Y dimW(nAY), > Q(n)
7]\/
where the sum runs over n¥ =nA" - ¥ vegv lava” with 0 <lov < § - ®.
Proof of Observation. The Kostant multiplicity formula [?] asserts that
dim W (nA") = 3 (<) Pw(nX + p*) - (5" + )
weW

where P(u") denotes the number of ways in which p¥ € X*(T') can be expressed
as a Zsp-linear combination of a¥ € RY. We claim P(w(n\Y +p¥) - (nY +p¥)) =0
for w # 1. Since
w(nAY +p") = (0" +p") =w®mA +p") = (A +p") + > lava’
aVeSV

the claim follows if, when w(nA\Y + p¥) — (rRAY + pV) is expressed as a Z-linear
combination of a" € SV, at least one coefficient is < —n. But this is clear since A" is
dominant (see, for example, [Hum?78, 13.2.A]). Therefore the observation is reduced
to producing a polynomial lower bound on

(13.5) > P(Y lava)

0<l, v<g - aveSV
of the correct degree. To do this we first claim that
. 1 . [RYI-1SY]
1’:’(ONZ€:Sv lova’) > (|R¥|—|SV| mln{lav})
This can be seen by noticing that if 0 < jov < min{l,v} for oY € RY \ SY
then there exists iqv > 0 for o € §¥ so that

Z lavO[V: Z javav-i- Z iavOév

aVeSV aVeRY\SV aVveSV

1
[RY]-[SV]

(indeed every a” € R{\S" can be expressed as asum of a” € S¥ and 50 ¥, very.sv javar”
can be expressed as a linear combination of o € SV with the a"-coefficient in the
interval [0, min{l,v}]). Therefore (13.5) is

1 [RY|-1SY]
> _ i lav
> 2 (IRXI— 5o })

0<lo<£-®
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which is easily seen to be a polynomial in n of degree (|RY|-|S"|)+|S"| with positive
leading term. ([

We return to the proof of the proposition. Choose ¥,® > 0 (we will be more
specific later). If e(6Y) appears in Cyv with non-zero multiplicity then e(6Y +
nAY = ¥ v lava’) appears in CxvW(nAY) for any n and any 0 < l,v < g — ®. The
observation above implies that for n >> 0 at least one of these e(8Y+n\Y =Y v lova)
must cancel in ), Y CAgW(N)\B/)7 since otherwise we contradict that assumption that
oy CryW(nAg) is polynomial in n of degree < |R}|. Therefore, for each sufficiently
large n there exists 0 <l,v < ¢ — ® and e(fy) appearing with non-zero multiplicity
in Cyy for Ag # A¥ so that (0" +n\Y - ¥ v lava) appears in e(0y)W (nAg). This
implies

nAY =Y lgva’ <05 -0 +nAg
a\/

Choose 8Y € X*(T) so that o € §¥ and the 8 form a basis of X*(T) ®7 Q. If
Oy — 0" = Xovesv Nava’ + gy ngv B then
n(Ay = AY) = > mavpa’ + Y ng S

aveSV BY
with mav ., > nov —lav. Since the ngv are bounded above independently of n (as
there are only finitely many possible 6y) it follows that each ngv = 0. If ® > —nqv
for every a" then we also have mgv p, > —i- Therefore

Ay - AV = Z Mava”
avesy

with mqv > —% for all ¥ > 0. We conclude that each m,v >0 and so Aj > AY. Since
this contradicts the maximality of \Y we conclude Cv =0 for every Y. (]



32

R. BARTLETT

Part 2. Cycle identities in moduli spaces of crystalline representations

14. NOTATION

14.1. For the second part of this paper we fix the following data:

o Let K/Q, be a finite extension with residue field k£ and ramification degree

e over Q,. Let C denote a completed algebraic closure of K with ring of
integers O¢ and fix a compatible system 7'/?" of p-th power roots of a
uniformiser 7 € K.

Fix another extension E of Q,, with ring of integers O and residue field F,
and an embedding k — F which we extend to an embedding W (k) - O.
Enlarging F if necessary we assume that F contains a Galois closure of K
so that W (k) < O extends to e distinct embeddings, which we index as
Kly...,Ke-

Let G be a split reductive group over O. Unlike in Part 1, we assume
additionally that G has connected fibres. We set

G = Resw (x)e,, 0/0 (G ®2z, W (k))

(thus G(A) = G(W (k) ®z, A) for any O-algebra A). Since W (k) ®z, O =
1L, O®w(r).pi W(kK), for f =[k:F,] and ¢ the lifting to W (k) of the p-th

power map on k, we can also write

_f
G = H G ®W (k),pt W(k)
i=1

We apply the constructions from Definition 4.1 to G and with ; := Ki()
to obtain the ind-scheme Grg. Notice we also have:

f
GI‘@ = H GI‘G ®W(k),4pi W(k)
=1

Maintaining the notation from Part 1, we write E(u) = [1;_; (u—m;). Notice
this coincides with the minimal polynomial of 7 in W (k)[u].

For any p-adically complete O-algebra A we set &4 := (W (k) ®z, A)[[u]]
and equip this ring with the A-linear Frobenius ¢ sending u ~ u? and lifting
the p-th power map on k. We frequently identify

_ !
G(64) = G(A[[u]]) = I} G(A[[u]])

and notice that the endomorphism of G(S& 4) induced by ¢ on & 4 identifies
with the automorphism of I"[lf=1 G(A[[u]]) given by (g:)i = (¢'(9i))i+1
where the ¢ are viewed modulo f and ¢’ is the automorphism of G(A[[u]])
induced by the A-linear endomorphism of A[[u]] given by u — uP

For any p-adically complete O-algebra we also consider

Ajnf,a = @&H(W(ch)/pa ®z, A)Ju'

where Ocy = lim Oc¢/p and u = [(77,771/”,771/1’2,...)] e W(O¢s). We
view Ajint, 4 as an G 4-algebra via v and note that the lift of Frobenius on
W(Oc) induces a Frobenius ¢ on Ajng 4 which is compatible with that
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on G 4. The natural Gg-action on Q¢ also induces a continuous (for the
(u, p)-adic topology) G k-action on Ajns 4 commuting with ¢. We also have
W(C")a = lim Aiye a[ £]/p"
a
If A is topologically of finite type (i.e. A ®z, I, is of finite type) then
G4 — Aing a is faithfully flat (in particular injective) [EG23, 2.2.13]. We
only consider the Ajn¢ 4 and W(C") 4 for such A.

e Fix a compatible system € = (e1,¢€2,...) of primitive p-th power roots of
unity in C. Then we can view € € Ocr and we set p = [e] - 1.

e A Hodge type u for K is a tuple of (conjugacy classes) of cocharacters of G,
indexed by the embeddings of K into @p (although we always ignore that
we are considering these cocharacters up to conjugacy). Since every such
embedding factors through F we can (and typically do) interpret a Hodge
type as an e-tuple of cocharacters of G.

15. MoDULI OF BREUIL-KISIN MODULES

15.1. For any p-adically complete O-algebra A a G-Breuil-Kisin module (usually
we omit the G-) over A is a G-torsor 9t on Spec & 4 equipped with an isomorphism

pon @ M gy] = M 5]
We refer to pon as the Frobenius on 9t and frequently write ¢ instead of pgn when
there is no risk of confusion.

e Let Zg(A) be the category of Breuil-Kisin modules over A whose mor-
phisms are isomorphisms of G-torsors compatible with the Frobenii.

e Let Zg(A) be the category of pairs (9,:) with 9t a Breuil-Kisin module
over A and ¢ a trivialisation of 9t over Spec&,4. Morphisms are isomor-
phisms of G-torsors compatible with the Frobenii and commuting with the
trivialisation.

Any homomorphism of p-adically complete O-algebras A — B induces a homomor-
phism &4 - &g and pull back induces functors Zg(B) - Zg(A) and ZY(B) -
Zg (A) making Zg and Z¢ into categories fibred over Spf®. In the obvious way
these constructions are functorial in G.

Remark 15.2. Tf (M, 1) € ZY(A) then we obtain an element Cyp, € G(&Sa[
giving the isomorphism

)

) ot . o .
0" T "M gy] 7 Mgy ] = €°
We say that Con,, represents the Frobenius on 9 relative to ¢.

Construction 15.3. We have morphisms

Z
AN
Za Gr

where I' forgets the choice of trivialisation and

WM, ) = (M, 0”00 o)

G
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Here (9M,p*1 0 o) is viewed as a pair consisting of a G-torsor on Spec A[[u]]
and a trivialisation after inverting E(u), and determines as an A-valued point of
Grg via Lemma 4.3; since A is p-adically complete the E(u)-adic completion of
Alu] coincides with A[[u]]. Concretely, if Con, € G(GA[ﬁ]) = C’V(A[[u]][ﬁ])
represents the Frobenius on 9 relative to ¢, then W(9M,:) = (€7, CD}%’L). It is easy
to see that I' and ¥ are respectively torsors for the following two actions of the
group scheme! L*G over O given by A~ G(S4) on Zg:

(%) (ma L) = (mag © L)7 9 ‘trans (ma L) = (mw L)

for M, € Z(A) the Breuil-Kisin with underlying G-torsor 9t and with Frobenius
represented (in the sense of Remark 15.2) by gCox,.

15.4. For an alternative viewpoint on Construction 15.3 let LG denote the group
ind-scheme over O given by A G(GA[ﬁ]). Then (9M,:) — Chn, gives an
isomorphism Zg = LG (or rather the p-adic completion of LG). Under this iso-
morphism the -,-action identifies with the action of L*G via ¢-conjugation C +
g 1Cp(g) while the -.qns-action identities with left multiplication. Therefore, the
diagram in Construction 15.3 identifies with

LG
T
[LG/ ,L*G] [LG/L*G] 2 Grg

where LG/ »L"G indicates the quotient by ¢-conjugation and LG/L*G indicates
the quotient by right multiplication.

An issue with Zg is that it is not of finite type over @. To address this we
will consider the certain quotients. These ideas go back to [PR09, 2.2]. See also
[Lin23, §3.3] which does essentially the same as that done here.

Definition 15.5. For N > 1 let Ug y ¢ L*G denote the subgroup with A-valued
points
ker (G(GA) - G(@A/UN))
and set Gg v = LYG/Ug N
Proposition 15.6. Let X c Grg be a closed subscheme on which p is nilpotent.
Then, for N > Ny (with Ny depending on X ),
[Zc XGrg X/WUG,N] Ve xarg X/Uc N]
(the quotient on the left being by the -, action and that on the right action by the
“trans-action). In particular, the map ¥ induces a morphism
Uy [Za xarg X/ JUa,n] > X

which is a torsor for the group scheme Gg n.

Proof. The isomorphism [Zg xarg X/ JUa,n] = (Za xGrg X /Ug,n] follows from the
concrete assertion that there exists NV > 1 so that for any C' ¢ LG(A) = G(& 4 [%])
representing an A-valued point in X one has:

o If go € Ug n(A) then g5'Cp(go) = gC for a unique g € Ug y(A).

INote that this is not the same group scheme as that defined in Notation 4.7.
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e If g € Ug n(A) then there exists a unique go € Ug n (A) for which g5*Cp(go) =
gC.
When G = GL,, this is shown in [Bar21, 9.6] (following arguments in [PR09, 2.2]).
For general G one chooses a faithful representation into GL,,. The first point then
follows immediately from the statement for GL,,. For the second point one recalls
that, in the case of GL,,, one constructs go € Ugr, nv(A) =1+ uN Mat(S,) as the
limit of a u-adically converging sequence of matrices in Ugr,, n(A). If g and C are
in G(GA[ﬁ]) then go will be the limit of a convergent sequence in G(GA[ﬁ])ﬂ
UcL, n(A) =Ug,n(A). Thus go € Ug,n(A) also, and the proposition follows. [

Corollary 15.7. Let u be a Hodge type and assume that for each kg : k - F

€

¥, i) <p
i=1
for all roots o. Then there exists a closed subfunctor Zg v of Za ®o F rep-
resented by an algebraic stack, of finite type over SpecF, with the property that
MeZg, r(A) if and only if
e For any A-algebra A’ and any trivialisation ¢ of M® 4 A’ one has U(M® 4
A,,L) € M# Qo F.

Furthermore, dim Zg , 7 = Y. c - p dim é/PHN .

Proof. Applying Proposition 15.6 with X = M, ®o[F shows that [ZG XGrg X/ WUG,N]
is, for large enough N, a finite type F-scheme of dimension
dimGg n+ Y. dimG/P,,
kiK—FE

To construct Zg,, 7 we descend this closed subscheme along the morphism W.
For this we need that [Zg xarg X/ ,Ug,n] is stable under the g -, (9, ¢) action of
Ga.n. Since Con go, = g7 Con,p(g) this stability is equivalent to asking that the
A-valued points of each M), ®o F c Grg are stable under the action of G(A[u”]).

For this notice that if Y;_; (o, ;) < p then g € G(A[uP]) acts on Y <, ®0 F as
go := g modulo u? (this is clear from the definition). Since M, ®o F c Y <, ®0 F
(see Proposition 5.9) the claim reduces to the claim that M, ® F is stable under
the action of GG, and this is immediate. ([l

Remark 15.8. We do not know whether Corollary 15.7 remains true with the bound
Yii{aY, ;) < p replaced with the more natural bound Y5 ;{a, ;) <e+p-1.

Corollary 15.9. Let H c G be an embedding of reductive groups. Then the induced
morphism

ZH —> ZG
is representable by schemes, and of finite type.

Proof. The well-known fact that Bung — Bung is representable by schemes implies
that, for any A-valued point of Zg, Zy xz, Spec A is representable by a closed
subscheme of an & 4-scheme. To check this scheme is of finite type over A we can
assume that A is a Noetherian O-algebra A on which p is nilpotent. After replacing
A by an fppf-cover we can factor Spec A - Zg through [ZG XGrg X/(pUGv’N] for
sufficient large NV and some X c Grg. We can also assume X is actually a closed
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subscheme of Grg. Writing ng =[Zg XGrg X/¢UG7N] we then have a sequence
of morphisms

’Zvﬁx XZJG\,’X xSpec A - Zy X7 Spec A — Spec A

The composite is of finite type since the same is true of [ZH XCr X/wUH,N] -

[ZG XGrg X/gaUGxND (in fact this is a closed immersion). As A is Noetherian it
follows that Zg xz, Spec A is of finite type also. d

Remark 15.10. For an embedding H c G the analogous morphism between moduli
spaces of shtuka’s in representable by schemes, and additionally finite and unram-
ified [Brel9, Yun22]. One expects that the same is true for Zy - Z¢, and it seems
that the arguments of loc. cit. will go through largely unchanged. Since we do not
need this additional level of control we do not try to give any details.

16. CRYSTALLINE BREUIL-KISIN MODULES

Here we discuss the link between Breuil-Kisin modules and crystalline represen-
tations, by extending the discussion from [Bar21, §10] from GL, to G.

Definition 16.1. Let A be a p-adically complete O-algebra topologically of finite
type and recall the G 4-algebra Ajns 4 which is equipped with a Frobenius extending
that on &4 and a continuous action of Gx commuting with the Frobenius. By an
action of G k-action on M € Z5(A) we mean a collection of morphisms in Zg(A)

ZTo MO 4,0 Aint, A = MBOs , Aint, A, oceGg

satisfying z,, = 5 o 0"z, and z1 = id. Such a Gi-action is crystalline if, for each
representation y : G - GL,, over O, the induced Gg-action satisfies (recall the
element po = [€] -1 € Ajur,4)

o(m) -meM(p)X ®e, up ' (1) Aing,a,  Too(m) —m =0

for all m e MX and all 0 € Gk, 00 € Gg.,. Write Y5 (A) for the groupoid consisting
of M e Z;(A) equipped with a crystalline G g-action.

We say that a continuous representation p: G — G(A) is crystalline if x o p is
crystalline in the sense of [Fon94b] for every representation x of G (equivalent for
a single faithful ).

Theorem 16.2. Let A be a finite flat O-algebra. Then to each (M, x) € Yo (A)
there exists is a uniquely determined (up to isomorphism) crystalline representation
p: G = G(A) together with a ¢, Gk -equivariant identification

Mo, W(C)azpoa W(C")a

of G-torsors. If A is a discrete valuation ring then every crystalline p arises in this
way from a unique (up to isomorphism) such (M, x).

Proof. The first part follows immediately from the assertion for GL,, (see [Bar20,
2.1.12]). The second part does not immediately follow from the case of GL,, because
the construction in [Kis06] of 9 from any p: Gx — GL,(A), while functorial and
tensor compatible, is not exact. In particular, the construction cannot, a priori, be
used to associate the G-torsor 9 to p: G - G(A).

Fortunately, this issue can easily be addressed because Kisin’s construction
actually produces an exact tensor functor sending a crystalline representations
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p: Gxg - GL, onto a vector bundle M(p)* on the D* = SpecSp \ {u = p = 0}
equipped with a Frobenius isomorphism after inverting F'(u). As explained in e.g.
[Lev15, 2.3.6] such an 9M(p)* can be interpreted as a pair of projective p-modules
respectively over 6@[%] and the p-adic completion Og 4 of GA[%], together with a
comparison isomorphism over Og, A[%]. The former is constructed in [Kis06, 1.3.15]
(and we look into this construction in more detail in Section 17) and the latter is
the etale p-module associated to p as in e.g. [Kis06, §2.1]. Then 2 (p) is obtained
using the equivalence between vector bundles on D* and Spec S [Ans22, 1.2] (this
extension is where exactness is lost).

Since p — M(p)* is exact and tensor compatible applying the construction to
a crystalline representation valued in G(Q) produces a G-torsor on D* equipped
with a Frobenius after inverting F(u). Then [Ans22, 1.2] can be applied again to
extend this G-torsor to a G-Breuil-Kisin module, producing the 91 associated to

p- (]

We say that a crystalline representation p : Gx - G(A) has Hodge type pu if xop
has Hodge type x o u for any representation x : G - GL,, of G.

Proposition 16.3. For each Hodge type p there exists a closed subfunctor Y[ of
Yo which is represented by an O-flat p-adic algebraic formal stack (in the sense
[EG23, AT]) YL of topologically finite type over O and is uniquely determined by
the property that its groupoid of A-valued points, for any finite flat O-algebra A, is
canonically equivalent to the full subcategory Y. (A) of Ya(A) consisting of those
M for which the associated crystalline representation p as in Theorem 16.2 has
Hodge type p.

Proof. When G = GL,, this is [Bar21, 10.7]. For general G one chooses a faithful
representation y : G - GL,. Corollary 15.9 shows that the projection

xop xop
Yar, *zow, 26 = Y,

is representable by finite type schemes and so Yéﬁ’: Xza1, Za 18 a p-adic algebraic
formal stack of topologically finite type over O. One takes Y/, as its O-flat closure
of Y&7" xz¢,, Zc (in the sense of [EG23, p.230]). O

We finish this section by explaining the relationship between Y(‘; and G-crystalline
deformation rings. Fix a continuous homomorphism 5: Gx - G(F) and let R% de-
note the corresponding framed deformation ring over O, i.e. the unique complete
local Noetherian O-algebra with residue field F equipped with a continuous homo-
morphism p"V: G - G (R%) satisfying p"™V ® po IF = 5 and universal amongst all
such rings with this property. !

Theorem 16.4. For each Hodge type p there exists a unique O-flat reduced quotient
Rg’cr’“ of RS with the property that a homomorphism RE — A with A a finite flat
O-algebra factors through Rg’cr”‘ if and only if the composite

univ

p
Gg —— G(R%) - G(A)
is crystalline of Hodge type p. Furthermore,

dimp B2 = dimp G + )" dim G/ P,

i=1
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Proof. This is a special case of the main result of [Kis08] when G = GL,, and of
[Ball2] for general G. See also [BG19, Theorem A]. O

Construction 16.5. Let A be any complete local Noetherian O-algebra with finite
residue field and let p: Gx — G(A) be a continuous representation. Consider the
functor which sends any p-adically complete A-algebra O which is topologically of
finite type over O on the set tuples (M, z, «, B) for which (M, z) e Y4 (A"), a: A~
B is a continuous homomorphism, and g is a ¢, Gi-equivariant identification

m@GA, W(Cb)A/ Z2p®4 W(Cb)A/

After choosing a faithful representation it follows from e.g. [EG23, 4.5.26] that this
functor is represented by the m 4-adic completion of a projective A-scheme whose O-
flat closure we denote by £/). Then L4 has the property that the structure morphism
Ll — Spec A becomes a closed immersion after inverting p. The scheme theoretic
image of this morphism corresponds to a quotient A°"* of A with the property that
a homomorphism A - B into a finite flat O-algebra B factors through Lg if and

only if Gi LR G(A) - G(B) is crystalline of Hodge type p.

For a given continuous p: Gx ~ G(F) set L7 = L univ for p"™V: G - G(RY)
the universal deformation of p. Then Construction 16.5 shows that R%]’Cr’“ is the
scheme theoretic image of E%r’” .

Lemma 16.6. For any continuous homomorphism p : G — G(F) there is a for-
mally smooth morphism

LI @0 F =Y} @0 F

of relative dimension dimo G which induces, for any p-adically complete O-algebra
of topologically finite type over O, the functor (M, z,«, B) —» (M, x).

Proof. The lifting property describing formal smoothness can be checked on p-
adically complete O-algebras factoring through R%’Cr’“ , and so we can assume the
ring is a complete local Noetherian ring with finite residue field. The lifting can
therefore be deduced from the main result of [Dee01]. This lifting is unique up to
G-conjugation which shows that the relative dimension is as claimed. (I

Corollary 16.7. (1) Let A be an Artin local O-algebra and (I, z) € Y4 (A).
Then there exists a finite flat O-algebra A°, with a morphism A° — A, and
(M2, 2°) € YL (A°) whose image under Y5 (A°) - YE(A) is (I, x).
(2) Y4 ®0F has dimension ¥, dim G/P,,.

Proof. Using Lemma 16.6 this follows from analogous assertions for £, of which
(1) is a consequence of [Bar20, 4.1.2] and (2) is a consequence of the dimension
formula for R;’Cr’“. O

17. THE SHAPE OF FROBENIUS

For the results of this section it is necessary to assume that the compatible
system 7P is chosen so that Koo N K (ttp) = K whenever upm is a compatible
system of primitive p-th power roots of unity. When p > 2 this is automatic and,
while not automatic when p = 2, it follows from [Wan22] that = can be chosen so
that this is the case.
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Theorem 17.1. Assume that v is a Hodge type satisfying

e

Z(av,ui> < £

i=1

+1, v =max;.;{v(m —7m;)}

where v denotes the valuation on O with v(m;) = 1 for one (equivalently all) i.
Then the morphism Y5 ® o F — Zg which forgets the crystalline G i -action factors
through Zg ;7.

Remark 17.2. (1) If p does not divide e, i.e. if K is tamely ramified over Q,,
then v = 1. To see this recall E(u) =[], (u - ;) and so

d e

L By = 3 -

du i=1j+i
Therefore %E(uﬂu:m = [1;.i(m — m;) has valuation ¥ ;.;v(m; — m;). On
the other hand, since F(u) = u® modulo p we have

d
— E(u)|y=r, = en¢™' modulo p
du ’

and so, if e is prime to p, then e ~1=3,_; v(m; - 7). As v(mj —m;) > 1 we
must have each v(7; —m;) = 1.
(2) If each p; is strictly dominant then .5 ;(a”, ;) > e and so for the bound
in Theorem 17.3 to hold we must have
p—-1
v

e< +1

In particular, (1) implies v = 1. Therefore, the bound in Theorem 17.3 is
equivalent to asking that

for each root V.

In order to prove Theorem 17.1 it suffices to show such a factorisation on the
level of Artin local F-algebras (see for example [Bar2l, 15.2]). Using the lifting
result of Corollary 16.7 we therefore reduce Theorem 17.1 to the following:

Theorem 17.3. Let A be a finite flat O-algebra and suppose that (IM(p),z) €
YL (A) corresponds as in Theorem 16.2 to a crystalline representation p of Hodge
type . Assume that, for all roots o of G,

e

-1
daY, pi) < py +1, v =max;.;j{v(m —m;)}
i=1

where v denotes the valuation on O with v(mw;) =1 for one (equivalently all) i. Then
\P(m(p), L) ®pFe MM(A ®o F)
for any trivialisation v of M(p)

The rest of this section will be devoted to the proof of the theorem. The first
step is to realise the Hodge type p in terms of 2M(p). We will see that this is easy
after inverting p.

17.4. We begin by introducing some power series rings in which p had been inverted:
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e Let 64 denote the E(u)-adic completion of & A[%]. Notice that since E'(u)
generates the kernel of the surjection G4 K ®z, A sending u ~ 7 this
surjection has a unique splitting, via which we view S asa kK ®z, A-
module.

e Let G4 ,; denote the (u—m;)-adic completion of & 4 [Il)] and identify this ring
with (Ko®z, A)[[u-m;]]. Asin 4.4 we have an isomorphism GazTl, 64,
and this allows us to consider the Taylor expansion around u = m; of any
f € G4t it is the power series

> falu=m)",  faeKo®z, A
n>0
corresponding to the image of f in & Ai-

e Let O™ denote the subring of Ko[[u]] consisting of power series convergent

on the open unit disk and set Off =A®z, O"& whenever A is a finite O-

algebra. We set \ = 152, % € 0" and we view O'® [ﬁ] as an

S a-algebra by sending an element onto its Taylor series around u = 7. We

write ¢ for the unique extension of ¢ on &4 to O%E.

Notice that the composite Of;g[ﬁ] - @Aﬂ- is injective for each ¢ and so we
frequently abuse notation by writing

f=2 falu—m)"

n>0

whenever f e O58[-1<].

ZIey)
17.5. Next we recall some aspects of the construction of M(p) [1%] from [Kis06] when
G = GL,,. First, the filtered p-module D(p) associated to p[}%] is used to construct

a projective C’)jg = 0"8 @, A-module M(p) together with an isomorphism
P M(p)[5] > M(p)[3]
See [Kis06, §1.2]. There are two key consequences of this construction:
o There exists a p-equivariant isomorphism

€0 M) iy ]2 D(6) Oxcos, 4 O )

See [Kis06, 1.2.6].
e After extending scalars to &4 we obtain isomorphisms p* M(p) ® ris G4 =
A

D(p) ®Ko®s, A Saz D(p)k ®Ke;, A & 4 under which

(17.6) M(p) ®pix &4 = 3 Fil'(D(p) k) ®rss, 4 B(u) "G
i€Z
See [Kis06, 1.2.1].
Using that D(p) comes from a crystalline representation (i.e. is an admissible
filtered ¢-module) Kisin then shows [Kis06, 1.3.8] that M(p) descends uniquely to
the projective GA[%]—module m(p)[%]

All the constructions from 17.5 are functorial in p, and compatible with exact
sequences and tensor products. Therefore, the Tannakian formalism ensures that
the observations in 17.5 remain valid (after interpreting (17.6) as in 4.10) when p
is valued in a general G. As a consequence we deduce:
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Corollary 17.7. For any trivialisation 3 of D(p) over Spec Ko ®z, A, the pair
(M(p) @, &4, 800 pay)

consisting of a G-torsor on Spec &4 and a trivialisation after inverting E(u), de-

fines an A[%]-valued point of M, c Grg. Equivalently, if X¢ g denotes the auto-
morphism
ot * ri < ri B
& — @ m(ﬂ) ®c, OAg[ﬁ] - D(p) ®KO®ZPA OAg[ﬁ] =&

of the trivial G-torsor then
Xep - U(M(p), )] € Mu(ALL])
This requires no bound on the Hodge type .

In order to use Corollary 17.7 to prove Theorem 17.3 we need to control the

denominators appearing in X¢ 3. Following ideas of [GLS14] we do this by first
deriving some kind of intergrality of a differential operator associated to X¢ g. Set
Smax = W(k)[[u, "Tf]] N O"8[1] and Smax,4 = Smax ®z, A for any finite O-algebra
A.
Proposition 17.8. Assume G = GL,, and define a differential operator Ny on
@*M(p)[ﬁ] 2 D(p) ®Koes, A Ogg[ﬁ] over 0 := u-L by setting Ny(d) =0 for
d e D(p). The assumption that KeNK (up~) = K ensures the matriz of Ny relative
to the trivialisation ¢©*1 of ga*./\/l(p)[ﬁ] has entries in

up@(smax,A)
Again this requires no bound on the Hodge type p.

Proof. The proof will be given in Section 20 below. The essential idea is to relate
Ny and the G'g-action on M®e , Aint, 4 after basechanging to an appropriate period
ring, and exploit the integrality of the Gx-action. ]

Remark 17.9. What is proved in [GLS14, 4.7] (when p > 2) and [Wan22, 4.1] (when
p=2and 7 is chosen so that Ko, n K (p?" ) = K) is that the entries of the matrix
representing Ny are contained in

(17.10) uP (W(k)[[up,%]][%] ms) ®s, A

where S denotes the p-adic completion of the divided power envelope of W (k)[u]
with respect to the ideal generated by F(u). This is slightly weaker than Proposi-
tion 17.8 (though for the purposes of this paper it makes no difference because the
calculations in the first paragraph of Corollary 17.11 below also go through using
(17.10), see [GLS15, 2.3.9]). We have stated the stronger result here because it may
be useful when considering Hodge types beyond the bounds imposed in this paper.

Corollary 17.11. Continue to assume G = GL,, and fix a trivialisation 5 of D(p)
over Spec Ko ®z, A. We then view the automorphism X¢ g from Corollary 17.7 as
a matriz and, as in 17.4, write its Taylor expansion around u = 7; as
Xep= ) Xin(u-m)"
n>0
Then
X;0Xin € Mat(x? "W (k) ®z, A)
for1<m<p-1.
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Proof. Let e = (eq,...,e,) denote the standard basis of £°. Then &(p*t71(e)) =
B 1(e)Xe 5. We can also write

Ny(p*H(e) =" (N
and Proposition 17.8 ensures that the matrix N has entries in u”¢(Smax,4). There-
fore,
N/
N = n_,pn
for matrices N), with entries in W (k) ®z, A. If the Taylor expansion of N around
U =75 18 Y ns0 N (0 — m)™ then
1 d\™ pn) /1 _(p-1)n-m+1
Np=—|— N)|yer, = N, 7,
m!(du) (N lumr ;(m K
for m > 0. Therefore Ny € n¥ Mat(W (k) ®z, A) and Ny, € 777" Mat (W (k) ®2, A)
form=1,...,p-1.
By definition we have Ny (£ o 87!(e)) = 0 and so, recalling that 9 = u-L, we

have ) .
" (e)N = Ny(p'™ (e))

= Ny (£ o 571 (e) Xe 5)

=& o 57 (e)0(Xe )

=t (g)Xg’lﬁa(Xg,ﬂ)
In other words, 0(X¢ g) = X¢,gN. In terms of Taylor expansions around u = 7; this
gives the recurrence nX; , + mi(n + 1) X ny1 = 7o X Nj. Multiplying on the
left by X, § gives

nX;(l)Xm + ’/TZ'(TL + 1)X;5X7,,n+1 = Z X;(l)Xiyn,ij
3=0
for all n > 0. The corollary then follows by an easy induction, using the divisibility
of the IV; from the first paragraph. O

Proof of Theorem 17.3 when G = GL,,. Recall that if § is a trivialisation of D(p)
then
Xe W (M(p), )[2] € M, (A[2])
As in Corollary 17.11 we view X¢ 3 as a matrix and, for each 1 < i < e, we have
Taylor expansions
X{,B = Z Xim(u - Wi)n, X@n € Mat(Ko ®z, A)
n>0

around u = m;. Let g € G(@A) = 17,4 G(@A}i) be such that its i-th component
equals X, € G(Ko ®z, A). Under the isomorphism Grg[] & Grg [1]x ...
Grg e[}%] the element g acts on the i-th factor by multiplication by X; ¢ and so g

stabilises M, u[%] Thus,
SW(M(p), L] € M, (A[L])
for X = g_lX&g. For 1 <i < e the Taylor expansion of X around u = m; is
> Xim(u—m)", Xim=X;0Xim

n>0
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and so Corollary 17.11 ensures X;, € 7?~" Mat(W (k) ®z, A) for 1 <n <p-1.
Applying Lemma 17.12 below with

i = mac{ (0", i)}

(the maximum taken over all roots o of G) shows that the image of X modulo
[T, (u—m;)™ is represented by a matrix X¢rune € G(S4) which equals the identity
in G(64 ®o F). This means we can write

X = XtruncXcrr

with Xepp = 1 modulo 5. (u—m;)™. Clearly X acts trivially on M,L[%] and so
)’Ztrunc\y(m(p)a L)[%] € MM(A[%])

Since A is p-torsion free it follows that XtrunC\I/(Sm(p), 1) € M,,(A) and, since Xirune
equals 1 in G(6 4 ®0 F) we conclude that

Xorunc T (M(p), 1) ®0 F = ¥(M(p),t) ®0 F e M, (A®o F)
which finishes the proof. O

Proof of Theorem 17.3 for general G. For general G the proof is essentially iden-
tical. As when G = GL,, we can find g € G(64) which stabilises Mu[%] and so
that

X = gX¢ g eker (G(64) > G(64/(u-)))

If, as above, we set n; = maxov{({a’, ;;)} then the action of X on MM[%] factors

through its image X rune under
S )
I (u — )™

Therefore, it suffices to show that X is the image under G(S4) - G(&4) of
an element in

G(8.4) ~ G(

ker(G(6.4) - G(64©0F))

and this follows from the arguments when G = GL,, after choosing a faithful repre-
sentation of G. (]

Lemma 17.12. Let A be a finite flat O-algebra and suppose n; > 0 are such that

iniﬁp_l +1
i=1 v

for v as in Theorem 17.3. Suppose that
G4 T G4,
[Ty (u =)™ g (u—m)™

maps an element f onto (f;); with f; = ZZ;BI in(u=m)" for fin em! "W (k)®z, A.
Then f is represented by an element in m;6 4.

Proof. By linearity we can fix 1 < i < e and assume f; = 0 for 7 # j. We need to
describe the inverse of the above isomorphism and so express f in terms of f;. For
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n+m-1

this we use the formal identity ﬁ = Y ms0 ( o

that

)y"”. Setting y = =" shows
17T

n;—1 . -1 _ - \m
(n] m ) (u=m) =1 modulo (u—m;)™

(u_ﬂj)'n;o nj =1 ) (m—m;)mn

Therefore f is represented by

n;—1 m
et mj+m -1\ (u—my) .
F=f][(u-m;)" (J )7zmodulo u—;)"
fzjg( ™) mZ=O ng—1 ) (m—m;)m™ (=)
(indeed,F = f; modulo (u - m;)™ and F = 0 modulo (u - m;)™ for j # ). By
hypothesis the coefficient of (u — ;)™ in f; has coefficient with m;-adic valuation
>p-n2p-vn (since v 2 1). On the other hand, the coefficient of (u — ;)"
in Z:lniz—ol (niltilil)% has m;-adic valuation > —(n + n;)v whenever ¢ # j.

Therefore, the coefficient of (u - ;)" in F has m;-adic valuation

>p-v(n+) nj)

i)
and so we will be done if p —v(n+¥,;.;n;) 21 for all n. = 0,...,n; — 1. In other
words, if p—v(=1+¥5_;n;) > 1 or equivalently
e
-1
Z n; < b +1
j=1 v
which finishes the proof. O

18. CONSTRUCTING GALOIS ACTIONS

In this section we equip MM € Zg,, ¢ with a canonical (and unique) crystalline
G i-action, under a bound on p. The necessary bound is very slightly stronger
than asking that 37 (a¥, ;) < p+e—-1. In order to formulate it recall that if
a Hodge type p corresponds to an e-tuple of cocharacters (pu1,. .., te) of G then,
after recalling that

.
Gz H G O, pi F
j=1

where f denotes the degree of k/F,, we can also view a Hodge type as a tuple p;;
of cocharacters of G for 1 <i<eand 1<j< f.

Proposition 18.1. Let M € Zg , v(A) with A any finite type F-algebra and p a
Hodge type satisfying
€

Y{a¥ i) <pre-1
=1

for each root &¥ of G and for each 1 < j < f. Assume there is a 1 < j < f with the
inequality strict for every o¥. Then M admits a unique crystalline Gy -action.

Before giving the proof we explain the propositions significance for us:

Corollary 18.2. Assume p is as in Proposition 18.1. Then the factorisation YC’; ®0
F— Za ur from Theorem 17.1 is a closed immersion.
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Proof. Proposition 18.1 implies that the morphism Yg ®0 xz,Z,.qF = ZucF is
an isomorphism. Since YC‘; is a closed subfunctor of Yy it follows that

ll,
Y& %26 Zapuk = Zau

is a closed immersion. But Theorem 17.1 implies Y4 %z, Zg,ur = Y2 ®0 F so the
corollary follows. (Il

Proof of Proposition 18.1. The claimed uniqueness of the G i-action means that it
will commute with any descent datum on 9t. Therefore, it suffices to prove the
proposition after pulling 9t back along an fppf cover of A. This allows us to assume
that 9t admits a trivialisation ¢ over Spec & 4. The proposition then follows from
the assertion that there exists a unique continuous cocycle

¢: G = Uit a = ker (G(Aint,a) = G(Aing,a/up™ (1))

satisfying c¢(o)o(C) = Cp(c(0)) for each o € Gi and C = Con,,. We will show how
this is the case when C' satisfies the two properties:

(1) For each o € Gk one has Co(C™1) € Uiy, a.

(2) The o-conjugation operator x ~ Czo(C™!) is such that Ad,(C) o ¢ sta-
bilises §®0 @™ (11) Aint, 4 and is a topologically nilpotent. Here § = Lie(G)
and ¢ on §®p Ainf,4 is the semi-linear extension of the trivial Frobenius
on G.

These two properties will imply that, for o € G,
(Ad,(C) 0 p)"(Co(C™") € Uint, a

and the sequence converges to an element ¢(o), defining a continuous cocycle as
desired. These claims can be checked after composing with a faithful representation
G - GL,, and, writing C also for its image in GLy, (At a[E(u)™]), we are left
showing that the difference

(Ads(C) 0 9)"(0(C)CT) = (Ado(C) 0 )" (a(C)CT)
=(Ady(C) 0 9)"(a(C)CT) (Co(C)p(a(C)a(C) " - 1)

is contained in up =t (1) Mat (Aing, 4) for each n and converges to zero as n — co. Now
(1) implies Cp(C)p(a(C) Mo (C)™t -1 is a matrix with entries in up™ (1) Aint, 4
and (2) implies that Ad,(C) o ¢ sends this matrix to another with entries in
up ™' (11) Aint, 4, and that the action of this operator on the matrix is topologically
nilpotent. Thus, the claimed convergence holds. For uniqueness, suppose d(o) is
another such cocycle. Continuing to write d(o) and c¢(o) for their images under
G — GL,, we see that d(o) — c(0) is fixed by Ad,(C) o ¢ and also that the action
of Ad,(C) o is topologically nilpotent on this element. Therefore d(o) =c(o). It
remains to check that conditions (1) and (2) hold whenever M € Z¢ , 7 (A).

Verifying condition (2). Condition (2) will be a consequence of the fact that ¥(91,:) €
Yz ., and the bound on y. Indeed, U(9M,1) € Yz, ensures that
u" Ad(C) 1 gj - g; ®0 Ga

where hj = max Y;_;(a", ;) for j=1,..., f and g; = Lie(G) denotes the Lie algebra
of the j-th factor in G = ]'[{IlG xw(ky,e W(k). Thus u" Ad,(C) sends g; into
0,90 Aint, 4 also. Since ¢ on G®o Aint, 4 restricts to the map g;®0 Aint = 9j+190 Aint
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which is the identity on the first factor and the Frobenius on the second, the operator
(Ad(C) o)™ acts as

~ Ad(C)op ”
9 ®0 up (1) At 4 ——— gj+1 ®0 uP T 1 Aing 4

Ad(C)op 2 phiiq—ha
——— g1 ®o uP TP 0o(1) Ajng 4

Ad(C)oyp n_pgn-lp o _n=2p o p
— gj+n ®0O ul 7P gnp g2 ]+n<pn(:u)Ainf,A

Since A is an F-algebra we have ¢" (1) Aing,a = uepn/(p’l)AmﬂA (see [Fon94b, 5.1.2])
so (2) is equivalent to asking that
p-1+e

p-1
for n > 0 and that this sequence converges to co as n — oo. That this is the case
under the assumptions on the h; is an easy computation.

e _ _
pn(ﬁ +1) = p" M hjir —p" Phaa — o = Ry 2

Verifying condition (1). Condition (1) will be a consequence of the fact that ¥(9,¢) €
M,,, and holds without any assumption on p. In fact, M, is contained inside a
closed subscheme Grg" c Grg whose A-valued points, for any p-adically complete

O-algebra A of topologically finite type, consists of those (£,¢) € Grg(’ (A) for which
there exists an fpcq cover A" — A trivialising £ so that

() @a A =(E°C) = Co(C) " €Ut ar

for every o € Gi. That this condition is closed, and that M, c Gr & easily reduce,

after choosing a faithful representation, to the case of GL,,, where they are proved
in [Bar21, 7.4] and [Bar21, 7.6]. O

19. CYCLE INEQUALITIES

Now we can prove the main theorem:

Theorem 19.1. Assume that G admits a twisting element p and let p : Gx —
G(F) be a continuous homomorphism. Let 1 be a Hodge type with each u; strictly

dominant. Suppose also that
€

YAa¥ wi)<p

i=1

for each root o of G. Then, as Y°., dim(ﬁ?’/PM—dimensional cycles inside of
Spec R% ®o FF, one has

[Spec B'%’Cr’“ ®0 F] < > my[Spec Rg’cr’x ®o F]
)

where

o The < indicates that the difference is an effective cycle, i.e. a Zsg-linear
combination of integral closed subschemes.

e The sum runs over dominant cocharacters \ of G.

e \ denotes the Hodge type given by the e-tuple A+p,0,..5p).
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e my denotes the multiplicity of W(\) inside ®F_4 W(u; — p). It follows
from [Jan03, 5.6] and [Her09, 3.10] that, due to the bound on u, my can
equivalently be defined as the multiplicity of the representation of G(IF)
obtained from the F-valued points of W () inside that induced from the
F-valued points in @5y W (u; — p).

In the proof we use the standard functoriality of groups of cycles, namely the
existence of a pullback homomorphism along flat morphisms and the pushforward
along proper morphisms. See for example [Stal7, 02R3, 02RA].

Proof. First, we can assume e > 1 since when e = 1 the theorem is vacuous. As a
consequence the inequality 3.5_;{(a", ;) < p ensures that Corollary 18.2 is applica-
ble.

Theorem 12.1 gives an identity of cycles [M, ®0F] = ¥\ mx[M5®oF]. For suffi-
ciently large N we can pull this identity back along the formally smooth morphism
U giving an equality

[Za Xarg (M, ®0 F)/wUG,N] = ZmA[ZG Xarg (M5 ®0 ]F)/@UG,N]
)

of dimGg v+ X7 dim G /P,,-dimensional cycles. This identity then descends to an
identity

[Z.c6] = D ma[Z5 ¢ ]
A

of ¥, dim G/ P,,,-dimensional cycles. Note that here we are discussing cycles inside
an algebraic stack, as opposed to a scheme. In this case a cycle is again a formal
linear combination of integral closed substacks, with the notion of multiplicity as
discussed in [Stal7, 0ODR4]. We also observe that, since Gg n is smooth and irre-
ducible, the irreducibility and generic reducedness of M5 ®o F from Theorem 9.1
is shared by Z5 ; 5.

Now Corollary 18.2 implies that [V ®o F] < [Zg,,r]. The irreducibility and
generic reducedness of Z, 5 5, together with the fact that dim Y ®oF =dim Zg,,, F

implies that this is an equality when p = . Therefore, we have

(Y5 ®0F] <Y mA[YS @0 F]
A

Pulling this identity back along the formally smooth morphism from Lemma 16.6
gives

(L5 @0 F] < Y- ma[LS @0 F]
A

Finally, pushing this identity along the proper morphism £7"*®oF —~ Spec RZ®0F
and using [Bar21, 3.3] to equate the pushforward of [L7** ®oF] with [Spec R%’Cf’“@)@
F] proves the theorem. O

20. MONODROMY AND GALOIS

Here we give a proof of the following equivalent formulation of Proposition 17.8.
For simplicity we work with Z,, coefficients but the extension to any coefficient ring
which is finite and flat over Z, is immediate.
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Proposition 20.1. Let 9 denote the Breuil-Kisin module associated to a crys-
talline representation p: Gx - GL,(Z,) and let Ny be the operator over O = u%
on Mes (’)rig[%] induced from the p-equivariant identification

Mes 0"¢[5] 2 D(p) ®s O"[5]
described in 17.5. If Ny (1) =N for an G-basis v of 9 then N € %Mat(Smax) for
S = W () [[1 211,

As explained in Remark 17.9, the results of this section are not strictly speaking
necessary for this paper but we still think they may be useful to help orient the
reader.

20.2. The ideas go back to [GLS14], with the new insight being that improved
bounds can be achieved by replacing Fontaine’s crystalline period ring Be;ys with a
better behaved period ring By,ax. This ring is defined in [Col98, §III] by considering
the subring Amax of Bjy consisting of elements which can be expressed as

v n
%o ()
n>0 p
for v any element generating the kernel of usual surjection © : Aj,r — O¢ and

ZTn € Ains a sequence converging p-adically to zero. Note that E(u) is one such
generator of this kernel. Then Bj., = Amax[5] and Bumax = Bl [{] for t =

max max

log([€]) = ano(—l)”w. The essential property that we will need is:

Lemma 20.3. Recall that O"8 denotes the ring of power series in Ko[[u]] con-
verging on the open unit disk, and A = [],5q gp"(g((g)) )™

S — Ajyr extends to an embedding of Orig[§] — Biax S0 that

Orig[%] n Amax c Smax

Then the inclusion of

Proof. An easy computation shows that each W is invertible in Spax, and so

it suffices to show 08 N A, .y € Spax. Any f € O'8 can be expressed uniquely as
=Y (5 g,

with ¢, € Ko[u] polynomials of degree < e converging p-adically to zero and we have
f € Smax- We claim that f € Ap.yx if and only if each g, € W(k)[u]. This will prove
the proposition because it will imply f € Sphax. To see this we use a result of Colmez.
Recall that © extends to a surjection © : By, - C and, following [Col98, §V.3], we
call an element z € Bl flat if 0(z) # 0 and if 2 € p*®) Ay where w(z) denotes the
integer part of v,(O(x)). We also say zero if flat. If ¢, = ¥} a;u’ is non-zero then
O(qn) = Y62y aim® is non-zero and w(O(gy,)) = minw,(a;). Thus g, € p*O@) A
and so each g, is flat. Colmez shows in [Col98, Lemme V.3.1] that if x € Bjy can
be expressed as a sum Y.,,59 yn(%)” with v € Ajnf nker © a generator and y,, € Bl
flat, then x € Ay ax if and only if w(y,) >0 and converges to co. Since E(u) is one
possible generator of ker © this gives the result. (]

Combining Lemma 20.3 with the following gives Proposition 20.1.
Proposition 20.4. With notation as in Proposition 20.1 one has N € p%\ Mat(Amax)-
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20.5. To prove this first observe that A,,.. has a natural Frobenius ¢ and a ¢-
equivariant G g-action extending that on Aj,r. Furthermore, one has ¢(Bmax) ©
Berys € Brax which shows that By,ax can be used as a replacement for the crystalline
period ring Berys. This means that there are y-equivariant identifications

(206) P ®Zp Bax = D(p) ®K0 max = N ®s Brax

with the first being G g-equivariant for the trivial action of Gx on D(p). Here the
second isomorphism is the base-change of the p-equivariant isomorphism

(20.7) MR Orig[ﬂ = D(p) ®k, Orig[ﬂ
described in 17.5, while the composite is obtained from the identification
(20.8) Mes W(C") = pez, W(C)

in Theorem 16.2, after applying [BMS18, 4.26] to descend this isomorphism to
Ainf[i], and then base-changing to Bax.

The key to proving Proposition 20.4 is to relate, inside of (20.6), the G'i-action
coming p with the operator Ny coming from D(p):

Lemma 20.9. For any 0 € Gx and m ¢ M®s O"E[1] one has

(o-1)(m) = Y Nz(m) @ (‘k’g([n%

n>1
Conversely, if 0 € Gk acts trivially on Z,(1) = Lir_nupn (C) (i-e. if the cyclotomic
character Xcyc 5 trivial on o) then

)

Ny(m) = Lyt @D

_71 Z(
log([e()]) =1 n
where €(0) € Zy(1) = o(u)/u.
Here convergence of the sums is taken with respect to the topology on B . .

with basis of open neighbourhoods of 0 given by p™ Apyax. Since Apax is p-adically
complete so is B for this topology.

Proof. Tt suffices to check these identities for m = d® f for d € D(p) and f € Orig[ﬂ.
Since (0 -1)(d) = Ny(d) = 0 the lemma reduces to the claim that when xcyc(co) =1

n+1(a 1)
o S )

converges in B to d(f) and, for any o € G,

Z 8n(f) ® (_log([e'(a)]))n

n>1 n
converges in By, to (6-1)(f). It suffices to check either claim when f = u’. For the
first note that if ycyc(o) =1 then (o —1)"(u') = u’([e(0)] - 1)™ for all n. Therefore
the claimed convergence follows from the easy observation [e(c)] -1 € pApyax when
p > 2 and that, when p = 2, instead has [e(o)] -1 = ([e(0)]*? = 1)([e(0)]"/? +
1) € 4Anax. For the second claim we note that, since 9™(f) = (-i)"u’ and so
Y1 0" (f) ® M = exp(log([e(c)])). By the same argument as above,
this converges to u [e(o)] a(f). O
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Next we prove the divisibility of the G g-action asserted in Theorem 16.2. Ac-
tually, we need something a little stronger:

Proposition 20.10. If m €M and o € Gk then
(6 -1)"(m) e Mos up (1) Ang
for n=1. If additionally Xcyc(c) =1 then this is true for all n > 1.

Here we will use that the topology on By, (in contrast to that on BZ,.) is well

behaved. More precisely, one has [Col98, Proposition II1.2.1] which implies that
any principal ideal in By is closed.

Proof. We show the equivalent assertion that (o — 1)"(¢(m)) € M¥ ®@s uP 1™ Aint
for MY the image of ©*M in Dﬁ[ﬁ] under the Frobenius. Iterating the formula

in Lemma 20.9 shows that (o —1)"(¢(m)) can be expressed as

(20.11) i( D Né(m)@)(_l?’i([e(;)']))])

J=n \Ji+...+jn=5,ji21 s dne

for n =1 and any 0 € Gg and, if xcyc(0) = 1, for all n > 1. As explained in 17.5,
(20.7) arises from an identification M¥ ®¢ (’)”g[ (/\)] D(p) ®k, O“g[gj(}\)] This

means that N2 L(p(m)) € M? @ uO™8[ (A)] for each j > 1 and so each term of

(20.11) is contained in uP#/ B} . Since all principal ideals in B,
follows that the entire sum is contained in MY @ uPt" By . also.

On the other hand, since (20.8) descends to an isomorphism over Ainf[%], we
also know that (o —1)(p(m)) € M? @ Ainf[i]. The proposition will therefore
follow from the assertion that

Ainf[;] nuPt" B

max

are closed it

= upﬂnAinf

To prove this first note that i is a unit in Apax by [Col98, Lemme I11.3.9]. There-
fore, we need to show that if @ € Ajr N p™ By, then a € u™Ajyr and if a € Ajpe N
u" Biax then a € u™ Ajns. The first claim follows from the fact [Fon94a, Proposition
5.1.3] that p generates the ideal in consisting of those = € Ajys with ¢™(x) € kerd
for all n > 0. For the second claim we use [Liul3, Lemma 3.2.2] which shows

u"BrY N Amf = u" Ajns. Since (B C Barys € Bmax, if b e u" B, N Ain¢ then

crys max ) max

p(b) e uP" B} N Aing = uP™ Ajng. Thus b € u™ Ay, as required. O

crys
Finally we can prove:

Proof of Proposition 20.4. The assumption that K. n K(up~) = K ensures that
o € G can be found with ¢(o) equal the fixed generator € € Z, (1) and xcyc(o) = 1.
For such a o we have

Ne(m) = 2§31y D )

for any m € 9. By Proposition 20.10 we know (o —1)"(m) € M ®g ue (1) Aint
for each n > 1. We are going to show that each term in the above sum, and hence
the sum itself, is contained MM @ g %1(“)14
For this claim it suffices to show that ¢! (u)"! € nAnax. Since o 1 (u)? = u

modulo pAj.s it follows that « := % - % € Ajne. Since p"(«) e kerd for all n > 1

max-
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. . : . « _ <P71 ll);m1 _ 22 .
we know that ¢(a) is divisible by p in Ajye. Hence i = 5 Tp € Aips.

-1 -1
Since (p,%(#) generates the kernel of © it follows that % € Apnax, and so the
claim holds when n = p. For general n, we write n = p*m for m coprime to p.
Since p* -1=(p-1)(1+p+...+p* ') we have n-12p*-12> (p-1)s and so
-1 n-1
% € Anax Which proves the claim.

et (w)
7

generates the same ideal of A.x as ¢ so this is equivalent to showing that

It remains only to show that Apax = p%\AmaX. We showed above that

_n
o™t (w)p
and )\ generate the same ideal. As ﬁ and F(u) generate the same ideal in Ajp¢
this is equivalent to asking that ¢(\) is a unit in A,,.x. But this is clear because

" (E(u))

50y 1 is topologically nilpotent in A,y for n > 1. O
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