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Abstract. We give an explicit formulation of the weight part of Serre’s conjecture for GL2 using
Kummer theory. This avoids any reference to p-adic Hodge theory. The key inputs are a description of

the reduction modulo p of crystalline extensions in terms of certain “GK -Artin–Scheier cocycles” and

a result of Abrashkin which describes these cocycles in terms of Kummer theory.
An alternative explicit formulation in terms of local class field theory was previously given by

Dembélé–Diamond–Roberts in the unramified case and by the second author in general. We show

that the description of Dembélé–Diamond–Roberts can be recovered directly from ours using the ex-
plicit reciprocity laws of Brückner–Shaferevich–Vostokov. These calculations illustrate how our use of

Kummer theory eliminates certain combinatorial complications appearing in these two papers.
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1. Introduction

Overview. Serre conjectured in [Ser87] that every continuous irreducible odd representation ρ : GQ →
GL2(Fp) arose as the reduction modulo p of the Galois representation attached to a modular form.
Furthermore, Serre predicted the possible weights of the relevant modular forms in terms of the local
representation ρ|GQp

. As the following example illustrates, the recipe is extremely explicit. Suppose

ρ|IQp
∼
(
χkcyc c
0 1

)
, 0 ≤ k ≤ p− 1

with χcyc the mod p cyclotomic character and IQp
⊂ GQp

the inertia subgroup. Then Serre expected
that ρ would be modular of weight k + 1. The one exception is when k = 1; in this case ρ is modular of
weight 2 if and only if the class of c is peu ramifié, i.e. contained in the image of the Kummer map

Z×
p ⊗Zp Fp → H1(GQp ,Fp(χcyc)).

Otherwise ρ will be modular of weight p+ 1.
Generalisations of this weight recipe have been made in [BDJ10; BGG13] with Q replaced by a totally

real field F . When ρ|GFv
is semisimple at each prime v of F dividing p this is an immediate extension of

Serre’s description. However, the more general setup requires considerably more complicated constraints
on the extension classes. The previously mentioned conjectures give a description of these extension
classes in terms of reductions of crystalline representations. In a series of papers [GK14; BGG13; New14],
culminating in [GLS15], these conjectures have essentially been proven. In particular, for p > 2 and a
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totally real field F , the possible weights of a modular representation ρ : GF → GL2(Fp) can be described
in terms of a set of “local” Serre weightsW cr(ρ|GFv

) defined in terms of Hodge–Tate weights of crystalline
lifts of ρ|GFv

at places v of F diving p. This is explained in detail in Section 2.
This description of the weights in terms of crystalline lifts, while conceptually appealing, is neither

explicit nor computable. The goal of this paper is to give an alternative description in the spirit of Serre’s
original conjecture, using the Kummer map. As a consequence, we obtain an explicit formulation of the
weight part of Serre’s conjecture which avoids any mention of p-adic Hodge theory.

Crystalline lifts and our main result. To achieve this goal we are reduced to the purely local problem
of explicitly describing W cr(r) for any continuous r : GK → GL2(Fp) with K/Qp a finite extension. The
results of [GLS15] give such an explicit description when r is semisimple and in general show that
W cr(r) ⊂W cr(rss). See Section 3.

To state our main result let f denote the residue degree of K over Qp and fix a uniformiser π ∈ K,

as well as a (pf − 1)-th root π1/(pf−1) in an algebraic closure. Set L equal the (pf − 1)-th unramified

extension of K(π1/(pf−1)). Then L contains the primitive p-th roots of unity. If l denotes the residue
field of L the Artin–Hasse exponential defines an isomorphism of Zp-modules

vW (l)[[v]]
∼−→ 1 + vW (l)[[v]]

sending f 7→
∑
n≥0

(
φn(f)
pn

)
for φ the Zp-linear endomorphism of W (l)[[v]] given by v 7→ vp and the

lift of Frobenius on W (l). Composing with evaluation at v = π1/(pf−1) produces a homomorphism
vW (l)[[v]]→ 1 +mL and applying ⊗Fp

Fp gives a homomorphism

vl[[v]]⊗Fp
Fp → L× ⊗Z Fp = H1(GL,Fp)

with the last identification coming via Kummer theory from a fixed choice of primitive p-th root of unity
in L. We extend this to a surjective homomorphism

Ψ0 : l[[v]]⊗Fp Fp → L× ⊗Z Fp = H1(GL,Fp)

by choosing any homomorphism ψ : l → Z/pZ and mapping x ∈ l onto πψ(x)/(pf−1). See Section 4 for
more details on these constructions.

Then our explicit version of the weight part of Serre’s conjecture is as follows.

Theorem 1.1. Suppose p > 2 and r : GK → GL2(Fp) is continuous with r =
( χ1 c

0 χ2

)
. Then there exists

an explicit Fp-subspace of l[[v]] ⊗Fp
Fp depending on σ and rss|IK only, whose image under Ψ0 we will

denote by Ψσ(χ1, χ2), such that σ ∈W cr(r) if and only

(1) σ ∈W cr(rss) and
(2) c|GL

∈ Ψσ(χ1, χ2).

This result is Theorem 5.6 and allows us to view the subspace Ψσ(χ1, χ2) as extending the notion of
peu ramifié classes in Serre’s original conjecture.

Since the map Ψ0 has a large kernel, there are many possible descriptions of the subspace defining
Ψσ(χ1, χ2). For example, the results from Section 6 describe a constant Cσ ∈ l[[v]] ⊗Fp

Fp so that

Ψσ(χ1, χ2) = Ψ0(Cσl[[u]] ⊗Fp
Fp) for u = vp

f−1. In fact, we have the following even more explicit
description.

Theorem 1.2. Assume that χ1/χ2 is not equal the trivial character or an unramified twist of the
cyclotomic character. Let e denote the ramification degree of K/Qp. For each τ ∈ HomFp(k,Fp) and

n ∈ [0, e − 1], there exist elements uτ,n ∈ l[[v]] ⊗Fp Fp depending on σ and rss|IK . Then there exists a

unique pair (J, x) with J ⊂ HomFp(k,Fp) and x = (xτ )τ :k→Fp
with xτ ∈ [0, e− 1] such that

Ψσ(χ1, χ2) = spanFp

{
Ψ0(uτ,n) | n ≤

{
xτ + 1 if τ ◦ φ−1 ∈ J ;
xτ if τ ◦ φ−1 ̸∈ J .

}
In fact, these Ψ0(uτ,n) form a basis of Ψσ(χ1, χ2).

The assumptions made on χ1/χ2 here are only for simplicity; for the complete statement we refer to
Proposition 6.3 and 6.2. We emphasise that, even though the above theorems assert only that various
subspaces or elements exist, in the body of the paper we give explicit formulae for all these objects.
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Relation to Dembélé–Diamond–Roberts. The idea of giving a completely explicit formulation of
the weight part of Serre’s conjecture was first addressed in [DDR16]. They assume K/Qp is unramified
and, in this setting, formulated a conjectural description of W cr(r) using local class field theory to
describe subspaces of H1(GK ,Fp(χ1/χ2)). These predictions were subsequently proven in [CEGM17].
In [Ste22] the second author showed that when K/Qp ramifies it is still possible to give an explicit
description along the lines of [DDR16] and prove the equivalence of this description to W cr(r).

In each of [DDR16; Ste22] the relevant subspaces of H1(GK ,Fp(χ1/χ2)) are described by first exhibit-

ing a basis of H1(GK ,Fp(χ1/χ2)) and then defining the subspaces as the span of certain elements of this
basis. One issue with this approach is that, in certain boundary situations, deciding which basis elements
should be included in the subspace requires a combinatorial recipe which is much more complicated than
that in Theorem 1.2. Even in the unramified case this recipe (see Section 10) is rather involved. In the
presence of ramification finding a simpler and more direct description for which basis elements are to be
included becomes a difficult combinatorial problem which is unlikely to have a straightforward general
solution (see, for example, [Ste20, Ch. 7] where simpler descriptions are given under several simplifying
assumptions). One of the main motivations for this paper was to circumvent these complications.

On the other hand, one can wonder whether Theorem 1.1 could be used to recover the results of
[DDR16] in the unramified case. We do this in the last part of the paper, using the explicit reciprocity
law of Brückner–Shafervich–Vostokov to pass between our Kummer theoretic description and that given
in terms of local class field theory.

Proposition 1.3. Assume K/Qp is unramified and let LDDR
σ (χ1, χ2) ⊂ H1(GK ,Fp(χ1/χ2)) denote the

subspace defined in [DDR16] (see Section 10 for more details). Then

LDDR
σ (χ1, χ2) = Ψσ(χ1, χ2)

Gal(L/K)=χ2/χ1

under the identification H1(GK ,Fp(χ1/χ2)) = H1(GL,Fp)Gal(L/K)=χ2/χ1 .

Of course this proposition follows immediately given that both subspaces Ψσ(χ1, χ2)
Gal(L/K)=χ2/χ1

and LDDR
σ (χ1, χ2) have the same interpretation in terms of crystalline lifts. However, in the spirit of this

entire paper, our calculations avoid any p-adic Hodge theoretic description. In particular, our calculations
give an alternative proof of the results in [DDR16] when p > 2. We believe it is possible to use a strategy
similar to the one we have used here to give a direct comparison of the results of this paper to the results
of [Ste22] in the ramified case.

Method of proof. To prove Theorem 1.1 we need to show that, if r admits a crystalline lift with Hodge–
Tate weights corresponding to σ, then this imposes significant conditions on r which can ultimately be
formulated in terms of the Artin–Hasse exponential. This is done in three steps:

Step 1. This uses the integral p-adic Hodge theory developed in [GLS15]. If r is a crystalline lift of r
witnessing σ ∈ W cr(r), then [GLS15] gives a description, in terms of σ, of the shape of the reduction
modulo p of the Breuil–Kisin module M associated to r. Here M is a finite free k[[u]] ⊗Fp

Fp-module
equipped with a semi-linear Frobenius endomorphism, and [GLS15] describes the matrix of this endo-
morphism in terms of a particular choice of basis (see Proposition 7.2). Set K∞ = K(π1/p∞) for π1/p∞

a compatible system of p-th power roots of π ∈ K. Then M and r|GK∞
are related using the existence

of a φ,GK∞ -equivariant identification

M⊗k[[u]] C♭ = r∨ ⊗Fp
C♭,

where C♭ denotes a specific algebraic closure of k((u)) and GK∞ acts trivially on M. In particular,
r∨|GK∞

= (M ⊗Fp
C♭)φ=1. Concretely, if β is a basis of M and α = βD generates r∨ (so that D is a

matrix such that φ(D−1)D equals the matrix of the Frobenius relative to β) then the GK∞-action on α
is given by

σ(α) = ασ(D)D−1.

From this we deduce a statement of the following shape: if r ∼
( χ1 c

0 χ2

)
, then there exists a subspace

ΨAS
σ (χ1, χ2) ⊂ H1(GK∞ ,Fp(χ1/χ2)) defined in terms of Artin–Scheier cocycles so that σ ∈ W cr(r)

implies

c|GK∞
∈ ΨAS

σ (χ1, χ2).

We emphasise that everything so far follows, more or less, immediately from [GLS15]. In the unramified
case this is the essential tool used to prove the conjecture of [DDR16] in [CEGM17].
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Step 2. The second step is to upgrade the description of the GK∞ -action on r, given in terms of M, to a
description of the GK-action. For this we first recall that the action of GK∞ on C♭ naturally extends to a
GK-action. Therefore, C♭-semi-linearly extending the GK-action on r∨⊗Fp

C♭ we obtain a φ-equivariant

GK-action on M⊗k[[u]]C♭. Since the GK-action on r comes from the reduction modulo p of a crystalline
representation this GK-action must satisfy the following divisibility

σ(m)−m ∈M⊗k[[u]] u(e+p−1)/(p−1)OC♭ ,

for all σ ∈ GK and m ∈M.
On the other hand, ideas from [Bar22] give a procedure which, in good cases, constructs an alternative

GK-action on M⊗k[[u]]C♭. This is done as follows: choose a basis β of M and define a “naive” GK-action

σnaive,β on M⊗k[[u]]C♭ by semi-linearly extending the action which fixes φ(β). In general, this action will
not be φ-equivariant. However, one can attempt to produce a φ-equivariant action from it by considering

σ = limn→∞ φn ◦ σnaive,β ◦ φ−n.

Typically (i.e. for an arbitrary Breuil–Kisin module) this limit will not converge. However, in our case
this limit really exists, due to the special shape of M (and ultimately the fact that the Hodge–Tate
weights of r are sufficiently small). Furthermore, one shows that this is the unique GK-action satisfying
the above divisibility. Therefore, the GK-action computed by this limit coincides with the GK-action
coming from r.

Concretely, if α = βD is a basis of r∨ then the GK-action on r∨ is given by

σ(α) = α
(
limn→∞ φn(σ(D)D−1)

)
.

This allows us to reformulate the implication in the final part of Step (1); we obtain that σ ∈ W cr(r)
implies

c ∈ ΨGK -AS
σ (χ1, χ2),

where now ΨGK -AS
σ (χ1, χ2) ⊂ H1(GK ,Fp(χ1/χ2)) is a subspace of certain “GK-Artin–Schreier” coycles.

Step 3. The final step is to produce a dictionary between the restriction of these“GK-Artin–Schreier”
cocycles to GL and Kummer cocycles. This was done in a beautiful computation of Abrashkin [Abr97].
To be precise he considers any h ∈ vl[[v]] and chooses h′ ∈ C♭ so that φ(h′)− h′ = h. Then he considers
the “GL-Artin–Schreier” cocycle GL → Fp defined by

σ 7→ limn→∞ φn (σ (h′)− h′) .

Equivalently, this cocycle can be described as sending σ ∈ GL onto the image of σ (h′) − h′ under the
map OC♭ → Fp. The restriction to GL of those cocycles in ΨGK -AS

σ (χ1, χ2) all have this form. Abrashkin
gives an explicit formula, using the map Ψ from above, which expresses this cocycle as a Kummer cocycle
(see Proposition 4.6). Using this formula we obtain a Kummer theoretic description the restriction of
ΨGK−AS
σ (χ1, χ2) to GL in terms of an explicit Ψσ(χ1, χ2). We deduce, for r ∼

( χ1 c
0 χ2

)
, that σ ∈W cr(r)

implies

c|GL
∈ Ψσ(χ1, χ2).

It only remains to prove the opposite implication: if c|GL
∈ Ψσ(χ1, χ2) then we must produce a crystalline

lift of r witnessing σ ∈ W cr(r). We do this in the standard way by producing crystalline lifts of the
characters χ1 and χ2 and then considering the image in H1(GK ,Fp(χ1/χ2)) of the space of crystalline
extensions of these two lifts. By the above this image is contained in Ψσ(χ1, χ2) and we will be done if
these two subspaces are equal. This follows by comparing dimensions.
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2. Serre weights

Throughout K/Qp is a finite extension with residue field k. Set f = [k : Fp] and e = e(K/Qp)
the ramification degree. Choose a uniformiser π ∈ K and a (pf − 1)-th root π1/(pf−1) in a completed

algebraic closure C of K. Set L equal the unramified extension of K(π1/pf−1) of degree pf − 1. Write l
for the residue field of L.

Definition 2.1. A Serre weight (for GL2(k)) is an isomorphism class of irreducible Fp-representations
of GL2(k). Any such class can be represented by

σa,b :=
⊗

τ∈HomFp (k,Fp)

(
detbτ ⊗k Symaτ−bτ k2

)
⊗k,τ Fp

for uniquely determined integers aτ , bτ satisfying bτ , aτ − bτ ∈ [0, p− 1] and not all bτ equal to p− 1.

Suppose V is a Hodge–Tate representation of GK on a Qp-vector space. For each κ ∈ HomQp(K,Qp),
the κ-Hodge–Tate weights HTκ(V ) of V is the multiset of integers which contains i with multiplicity

dimQp
(V ⊗κ,K C(−i))GK .

Here C(i) is a completed algebraic closure of K with the twisted GK-action σ(a) = χcyc(σ)
iσ(a) for χcyc

the p-adic cyclotomic character. Thus, HTκ(χcyc) = {1} for every κ.

Definition 2.2. A lift of a Serre weight σ = σa,b is a tuple of pairs of integers σ̃ = (ãκ, b̃κ)κ∈HomQp (K,Qp)

such that, for each τ : k → Fp, there is an indexing

(2.3) {κ ∈ HomQp
(K,Qp) | κ|k = τ} = {τ0, . . . , τe−1}

so that

(ãκ, b̃κ) =

{
(aτ + 1, bτ ) if κ = τ0;

(1, 0) if κ = τi for i > 0.

We say that a crystalline representation of GK on a finite free Zp-module V has Hodge type σ if there

exists a lift σ̃ = (ãκ, b̃κ) so that

HTκ(V ) = (ãκ, b̃κ)

for every κ : K → Qp.

Definition 2.4. For a continuous r : GK → GL2(Fp), we let W cr(r) denote the set of Serre weights σa,b
for which there exists a crystalline representation of GK on a finite free Zp-module V with Hodge type

σa,b and V ⊗Zp
Fp ∼= r.

The following motivates the definition of W cr(r). Suppose that F is a totally real extension of Q. Let
ρ : GF → GL2(F) be a continuous and absolutely irreducible representation which arises as the reduction
modulo p of a p-adic representation associated to a Hilbert modular eigenform of parallel weight 2. For
each place v of F dividing p, let kv denote the residue field of Fv. Let D be a quarternion algebra with
centre F and which is split at all places dividing p, and at zero or one infinite place. In [GK14, 4.3.3]
it is explained what it means for ρ to be modular for D of weight σ = ⊗v|pσv (each σv being a Serre
weight for GL2(kv)).

Theorem 2.5. Suppose that p > 2. Assume also that ρ is modular, compatible with D in the sense of
[GK14, 4.3.4], and that ρ|GF (ζp)

is irreducible. If p = 5 assume that the projective image of ρ|GF (ζp)
is

not isomorphic to A5. Then ρ is modular for D of weight σ = ⊗v|pσv if and only if σv ∈W cr(ρ|GFv
) for

each v | p.

Proof. See [GLS15, §4.1 and §4.2]. □

3. Explicit Serre weights in the semisimple case

In this section we recall explicit descriptions of W cr(r) when r is semisimple. Recall our fixed choice

of uniformiser π ∈ K as well as the (pf − 1)-th root π1/(pf−1). Using this we can define a character

ω : GK → k×
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by setting ω(σ) equal the image of σ(π1/(pf−1))/π1/(pf−1) in k×. Note that ω depends upon π1/(pf−1),
but its restriction to the inertia subgroup IK does not. For τ : k → Fp, set ωτ := τ ◦ ω. Then, for every
character χ : GK → F×

p , one can write

χ|IK =
∏
τ

ωnτ
τ

for some integers nτ . The nτ are uniquely determined if we further ask that nτ ∈ [1, p] and not every nτ
equals p. Notice also that, since ωpτ = ωτ◦φ, we can write χ|IK = ω

Ωτ,n
τ for any τ : k → Fp, where

(3.1) Ωτ,n :=

f−1∑
i=0

pinτ◦φi .

Definition 3.2. Let r : GK → GL2(Fp) be continuous and semisimple. Following [GLS15, 4.1] we define
a set of Serre weights W exp(r) as follows:

• If r is a direct sum of two characters, then σa,b ∈W exp(r) if there exists

J ⊂ HomFp
(k,F), xτ ∈ [0, e− 1] for each τ ∈ HomFp

(k,Fp)
so that

r|IK ∼=
(∏

τ∈J ω
aτ+1+xτ
τ

∏
τ ̸∈J ω

bτ+xτ
τ 0

0
∏
τ ̸∈J ω

aτ+e−xτ
τ

∏
τ∈J ω

bτ+e−1−xτ
τ

)
.

• If r is irreducible, then σa,b ∈W exp(r) if and only if there exists

J ⊂ HomFp
(k2,F), xτ ∈ [0, e− 1] for each τ ∈ HomFp

(k,Fp)
so that

r|IK ∼=

(∏
τ∈J ω

aτ+1+xτ|k
τ

∏
τ ̸∈J ω

bτ+xτ|k
τ 0

0
∏
τ ̸∈J ω

aτ+1+e−1+xτ|k
τ

∏
τ∈J ω

bτ+e−1−xτ|k
τ

)
and so that HomFp(k2,Fp) is the disjoint union of J and {τ ◦ σ | τ ∈ J}, where σ denotes the
non-trivial element of Gal(k2/k); here k2 denotes the unique degree 2 extension of k.

Theorem 3.3 (Gee–Liu–Savitt, Wang). If r is semisimple, then W exp(r) =W cr(r).

Proof. When p > 2 this is [GLS15, 5.1.5] except with xτ from loc. cit. replaced with e−1−xτ for τ ̸∈ J
(this renormalisation is for convenience later on). When p = 2 the methods of Gee–Liu–Savitt have been
adapted by Wang (see [Wan17, Theorem 5.4]). □

When r is reducible but not semisimple [GLS15] shows that W cr(r) ⊂ W exp(rss). However, this
inclusion is rarely an equality. Our goal is to give a an explicit condition on the extension class of r
which determines whether σa,b ∈W exp(rss) is contained in W cr(r).

4. The Artin–Hasse exponential

In this section we use the Artin–Hasse exponential to construct certain subspaces of H1(GL,Fp) from
power series in l[[v]]⊗Fp

Fp. Later (in Section 5) we will use these subspaces to define versions ofW exp(r)
for non-semisimple r. In order to apply results from [Vos79] and [Abr97] we assume that p > 2 in this
section.

Construction 4.1. Recall that l denotes the residue field of L. Then [Vos79, Proposition 1] produces
an isomorphism of Zp-modules

EAH : vW (l)[[v]]
∼−→ 1 + vW (l)[[v]],

given by

x 7→ exp

∑
n≥0

(
φ

p
)n(x)

 .

Here exp(x) =
∑
i≥0

xi

i! and φ denotes the Zp-linear operator on W (l)[[v]], which acts as the Witt vector

Frobenius on W (l) and which sends v 7→ vp. Applying ⊗ZpFp produces an isomorphism vl[[v]]
∼−→

(1 + vW (l)[[v]])⊗Zp Fp. We can extend E
AH

to a surjective homomorphism

E
AH

: l[[v]]→W (l)((v))× ⊗Z Fp
6



by choosing any surjective group homomorphism ψ : l→ Z/pZ and setting E
AH

(x) = vψ(x) for x ∈ l.

Composing E
AH

with evaluation at v = π1/(pf−1) produces a homomorphism

(4.2) Ψ0 : l[[v]]→ L× ⊗Z Fp = H1(GL, µp(L))

Here µp(L) denotes the group of p-th roots of unity in L and the identification on the right is given by
the Kummer map (notice that by construction L contains a primitive p-th root of unity).

Remark 4.3. The reason for making the somewhat artificial extension of E
AH

from vl[[v]] to l[[v]] is that
it allows us to give a uniform statement of our main theorem. In all but one case we will only need to

view E
AH

(or Ψ0) as a function on vl[[v]]. To incorporate the one degenerate case however, it is necessary
to have a map surjecting onto H1(GL, µp(L)); for this reason we ask that the constant terms in l[[v]]
be mapped onto powers of v. See Lemma 6.1 and Corollary 6.2 for more precise results regarding this
degenerate case.

The motivation for considering Ψ0 comes a result of Abrashkin [Abr97], which we will explain now.

Definition 4.4. To state Abrashkin’s result we write OC for the ring of integers in the completed
algebraic closure C of K, and OC♭ := lim←−x 7→xp

OC/p for its tilt. Recall that OC♭ multiplicatively

identifies with lim←−x 7→xp
OC . Fix a choice of compatible system π1/(pf−1)p∞ ∈ C of p-th power roots of

π1/(pf−1) so that

(π1/(pf−1), π1/p(pf−1), π1/p2(pf−1), . . .) ∈ OC♭

Then v 7→ (π1/(pf−1), π1/p(pf−1), π1/p2(pf−1), . . .) defines an embedding

l[[v]] ↪→ OC♭

via which we viewOC♭ as an l[[v]]-algebra. Set u := vp
f−1. Thus, we also get an embedding k[[u]] ↪→ OC♭ .

The ring OC♭ is u-adically complete and C♭ := OC♭ [ 1u ] = FracOC♭ is algebraically closed.

Note that GK-acts naturally on OC♭ via its action on OC . Under this action the subrings l[[v]] and
k[[v]] are not GK-stable. However, they are stable under the action of GK∞ for K∞ = K(π1/p∞).
Furthermore, this action factors through the surjection GK∞ → Gal(L/K) (which exists because L ∩
K∞ = K since L/K is tamely ramified while K∞/K is totally wildly ramified) and is concretely given
by

(4.5) g ·
∑
i≥0

fiv
i =

∑
i≥0

g(fi)ω(g)
ivi

for the character ω defined in Section 3.

Theorem 4.6 (Abrashkin). Fix a generator ϵ1 ∈ µp(L) and choose z(v) ∈W (l)[[v]] with z(π1/(pf−1)) =

ϵ1. Suppose that h ∈ u−ep/(p−1)vl[[v]]. Then there exists a homomorphism ch : GL → Fp such that:

• If H ∈ C♭ satisfies Hp −H = h then g(H)−H ≡ ch(g) modulo mC♭ for every g ∈ GL.
• The image of h(z(v)p − 1) ∈ vl[[v]] under Ψ0 from (4.2) is given by g 7→ ϵ

ch(g)
1 for all g ∈ GL.

In the second bullet point we write z(v) for its image in l[[v]] and use that z(v)−1 ∈ ue/(p−1)l[[v]] (which
follows from the fact that ϵ1 − 1 has p-adic valuation 1/(p− 1)).

Proof. This is the main lemma in [Abr97, Section 2.3] specialised to the case M = 1. For the benefit of
the reader let us reiterate why there exists a function ch : GL → Fp so that

g(H)−H ≡ ch(g) modulo mC♭ .

We claim that it is enough to check that g(h)− h ∈ mC♭ . Indeed, if this is the case then any solution to
Xp −X = g(h)− h can be written as X0 +X1 with X0 ∈ Fp and X1 ∈ mC♭ . If we take X = g(H)−H
then we can set ch(g) = X0.

To check that g(h) − h ∈ mC♭ notice that, since h ∈ u−ep/(p−1)vl[[v]], it is enough to check that
g(vi) − vi ∈ viuep/(p−1)OC♭ for any i ∈ Z. To see this write g(vi) − vi = vi(ζi − 1) for some element
ζ = (1, ζ1, ζ2, . . .) ∈ OC♭ . Then recall the well-known fact that ζ − 1 generates the ideal uep/(p−1)OC♭

(see, for example, [Fon94, 5.1.3]). □
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As a first application of this result we produce a refinement of (4.2) by defining

Ψ : u−ep/(p−1)l[[v]]⊗Fp
Fp → H1(GL,Fp)

as the Fp-linear extension of the composite

u−ep/(p−1)l[[u]]
z(v)p−1)−−−−−−→ l[[v]]

Ψ0−−→ H1(GL, µp(L))→ H1(GL,Fp),
where z(v) is as in Theorem 4.6 and the last map is the identification induced by the choice of ϵ1. In
other words, the last map sends f : GL → µp(L) onto the homomorphism c : GL → Fp characterised by

f(g) = ϵ
c(g)
1 .

In the following corollary we write φ for the Fp-linear extension of the p-th power map on OC♭ .

Corollary 4.7.

(1) If H ∈ C♭ ⊗Fp
Fp satisfies φ(H)−H = h for h ∈ u−ep/(p−1)vl[[v]]⊗Fp

Fp, then

g(H)−H ≡ Ψ(h)(g) modulo mC♭
⊗Fp Fp

for all g ∈ GL.
(2) The map Ψ is Gal(L/K)-equivariant when restricted to u−ep/(p−1)vl[[v]].
(3) If H ∈ l((v))⊗Fp

Fp is such that φ(H)−H ∈ u−ep/(p−1)vl[[v]]⊗Fp
Fp, then Ψ(φ(H)−H) = 0.

Proof. Part (1) follows immediately from Theorem 4.6. For part (2) choose g0 ∈ Gal(L/K) and write g0
also for a lift to GK∞ . If h ∈ vl[[v]]⊗Fp

Fp and H ∈ C♭ ⊗Fp
Fp satisfies φ(H)−H then, by part (1),

Ψ(g0(h))(g) ≡ g(g0(H))− g0(H) modulo mC♭

= g0
(
g−1
0 gg0(H)−H

)
≡ g0Ψ(h)(g−1

0 gg0) modulo mC♭ ,

Since the action of Gal(L/K) on H1(GL,Fp) is given by

(g0 · c)(g) = g0c(g
−1
0 gg0),

part (2) follows. For part (3) we note that φ(H)−H ∈ u−ep/(p−1)vl[[v]]⊗Fp Fp implies

H ∈ u−ep/(p−1)vl[[v]]⊗Fp Fp.

Therefore, the calculation made in the proof of Theorem 4.6 shows that g(H)−H ∈ mC♭ ⊗Fp
Fp for all

g ∈ GL. □

5. Explicit Serre weights via Kummer theory

In this section we define a version of W exp(r) for reducible but not necessarily semisimple r. In order
to apply results from the previous section we assume p > 2.

Notation 5.1. We frequently use the observation that k ⊗Fp
Fp =

∏
τ :k→Fp

Fp, the identification being

given by a ⊗ b 7→ (τ(a)b)τ . Therefore k[[v]] ⊗Fp
Fp =

∏
τ :k→Fp

Fp[[v]]. Via this identification we can

express an element of y ∈ k[[v]]⊗Fp
Fp as a tuple (yτ )τ with yτ ∈ Fp[[v]].

Definition 5.2. Fix a Serre weight σ and two characters χ1, χ2 : GK → F×
p . Then we define

Ψσ(χ1, χ2) :=
∑
J,x

Ψσ,J,x ⊂ H1(GL,Fp)

where:

• The sum runs over pairs J ⊂ HomFp
(k,Fp) and x = (xτ )τ :k→Fp

with xτ ∈ [0, e− 1] for which

χ1|IK =
∏
τ∈J

ωaτ+1+xτ
τ

∏
τ ̸∈J

ωbτ+xτ
τ , χ2|IK =

∏
τ ̸∈J

ωaτ+e−xτ
τ

∏
τ∈J

ωbτ+e−1−xτ
τ

• Ψσ,J,x is the image of

(vΩτ,σ,J,x−(pf−1)xτ )τ l[[u]]⊗Fp
Fp

under Ψ : u−ep/(p−1)l[[u]]⊗Fp
Fp → H1(GL,Fp) for

Ωτ,σ,J,x :=

f−1∑
i=0

pi
(
(aτ◦φi − bτ◦φi + 1)(−1)τ◦φ

i∈J + (e− 1− 2xτ◦φi)
)
,
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where

(−1)τ∈J :=

{
1 if τ ̸∈ J ;
−1 if τ ∈ J .

For this to make sense we need (vΩτ,σ,J,x−(pf−1)xτ )τ l[[u]]⊗Fp
Fp ⊂ u−ep/(p−1)l[[u]]⊗Fp

Fp. This

can be seen by observing that Ωτ,σ,J,x is minimal when J = HomFp
(k,Fp) and each xτ = e− 1,

in which case Ωτ,σ,J,x ≥ −(e+p−1)(pf −1)/(p−1). Notice also that Ψσ(χ1, χ2) is empty unless
σ ∈W exp(χ1 ⊕ χ2).

Remark 5.3. To motivate the appearance of the value Ωτ,σ,J,x set

sτ =

{
bτ + xτ if τ ̸∈ J
aτ + 1 + xτ if τ ∈ J

, tτ =

{
aτ + e− xτ if τ ̸∈ J
bτ + e− 1− xτ if τ ∈ J

and notice that Ωτ,σ,J,x = Ωτ,t−s for Ωτ,t−s defined as in (3.1). Therefore, for g ∈ Gal(L/K), we have

(5.4) g(vΩτ,σ,J,x)τ = (vΩτ,σ,J,xωΩτ,σ,J,x
τ (g))τ = ωσ,J,x(g)(v

Ωτ,σ,J,x)τ ,

where ωσ,J,x :=
∏
τ ω

tτ−sτ
τ . Examining the first bullet point of Definition 5.2 shows that Ψσ(χ1, χ2)

being non-empty implies

χ2/χ1|IK = ωσ,J,x.

Definition 5.5. Suppose r ∼
( χ1 c

0 χ2

)
and write χ = χ1/χ2. We define W exp(r) by asserting that

σa,b ∈W exp(r) if and only if

(1) σ ∈W exp(rss) and

(2) under the identification H1(GK ,Fp(χ)) = H1(GL,Fp)Gal(L/K)=χ−1

induced by the inflation-
restriction exact sequence we have c ∈ Ψσ(χ1, χ2).

Our main theorem (whose proof is completed in Section 9) is then as follows.

Theorem 5.6. For p > 2, we have W exp(r) =W cr(r).

Notice that the definition of Ψσ(χ1, χ2) is insensitive to twisting the characters χ1 and χ2 by unramified
characters. The next lemma shows that, in fact, Ψσ(χ1, χ2) accounts for all such unramified twistings
simultaneously.

Lemma 5.7. We have

Ψσ(χ1, χ2) =
⊕
ψ

Ψσ(χ1, χ2)
Gal(L/K)=ψχ2/χ1

with the direct sum running over all unramified characters ψ : GK → F×
p .

Since Gal(L/K) has order prime to p, this lemma follows from the observation that Ψσ(χ1, χ2) =
Ψσ(χ1, χ2)

I(L/K)=χ2/χ1 for I(L/K) ⊂ Gal(L/K) the inertia subgroup. In almost all cases this follows
from the equivariance of Ψ from Corollary 4.7. In one degenerate case this argument does not work.
Since we explain this issue in more detail in Section 6, we give a complete proof of Lemma 5.7 in that
section.

6. Refined descriptions of Ψσ(χ1, χ2)

In this section we give more concrete descriptions of Ψσ(χ1, χ2) by producing smaller subspaces of

u−ep/(p−1)l[[v]] ⊗Fp
Fp whose image under Ψ computes Ψσ(χ1, χ2)

Gal(L/K)=χ−1

. In particular, these
calculations will give upper bounds on the dimension of Ψσ(χ1, χ2).

We begin by dealing with the most degenerate situation.

Lemma 6.1. Suppose σ = σa,b with aτ − bτ = p − 1 for every τ . If J = HomFp
(k,Fp) and xτ = e − 1

for each τ , then

Ψ
Gal(L/K)=χ−1

σ,J,x = H1(GK ,Fp(χ))

if χ is an unramified twist of the cyclotomic character χcyc.
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Proof. The assumptions on σ, J and x imply Ωτ,σ,J,x − (pf − 1)xτ = −ep(pf − 1)/(p − 1). Therefore,

Ψσ,J,x equals the Fp-linear extension of the image of l[[u]] under the surjection Ψ0 : l[[v]]→ L× ⊗Z Fp =
H1(GL, µp(L)). If Kur is the unramified extension of K of degree pf − 1, then it follows that Ψσ,J,x
equals the Fp-linear extension of the image of K×

ur ⊗Z Fp = H1(GKur
, µp(L)) under the restriction map.

Thus, Ψ
Gal(L/K)=χ−1

σ,J,x = H1(GK ,Fp(χ)) if χ is an unramified twist of the cyclotomic character (and is

zero otherwise). □

Corollary 6.2. Suppose r = ψ ⊗ ( χcyc c
0 1 ) for an unramified character ψ. Then σ = σa,0 ∈ W exp(r) if

aτ = p− 1 for every τ .

Proof. The previous lemma implies that χ−1
cyc|IK = ωσ,J,x for J = HomFp(k,Fp) and xτ = e− 1 for every

τ . From this we deduce that σ ∈ W exp(rss). The previous lemma also shows that Ψσ(χ1, χ2) contains
H1(GK ,Fp(ψχcyc)) and so c ∈ Ψσ(χ1, χ2). □

For the rest of the section we assume we are not in the case just mentioned, i.e. we assume that if
J = HomFp

(k,Fp) then xτ ̸= e − 1 for at least one τ . The essential reason for distinguishing between
these two cases is because, as mentioned in Definition 5.2, the inequality

Ωτ,σ,J,x ≥ −(e+ p− 1)
pf − 1

p− 1

is strict except when J = HomF(k,Fp) and xτ = e − 1 for every τ . We will see in the following proofs
(see also the proof of Theorem 8.1) that the strictness of this inequality plays a crucial role in certain
arguments.

Proof of Lemma 5.7. We’ve seen it suffices to show that Ψσ(χ1, χ2) = Ψσ(χ1, χ2)
I(L/K)=χ2/χ1 for the

inertia subgroup I(L/K) ⊂ Gal(L/K). By the above we may assume

Ωτ,σ,J,x > −(e+ p− 1)(pf − 1)/(p− 1)

so that (vΩτ,σ,J,x−(pf−1)xτ )τ l[[u]] ⊗Fp
Fp ⊂ u−ep/(p−1)vl[[v]] ⊗Fp

Fp. By Corollary 4.7, Ψ is Gal(L/K)-

equivariant when restricted to u−ep/(p−1)vl[[v]] ⊗Fp
Fp, it is enough to show that I(L/K) acts on

(vΩτ,σ,J,x−(pf−1)xτ )τ l[[u]]⊗Fp Fp) as ωσ,J,x. This follows from (5.4). □

Proposition 6.3. Assume that if J = HomFp
(k,Fp), then xτ ̸= e − 1 for at least one τ . Also fix

τ0 : k → Fp and an unramified character ψ : GK → F×
p .

Define UJ,x,ψ ⊂ k[[u]]⊗Fp
Fp as the k⊗Fp

Fp-subspace generated by those y = (yτ )τ ∈ k[[u]]⊗Fp
Fp for

which

• yτ ∈ Fp[u] has non-zero terms concentrated in degrees [0, xτ ] if τ ◦ φ−1 ∈ J , and
• non-zero terms concentrated in degree [0, xτ − 1] if τ ◦ φ−1 ̸∈ J .
• If ψ = 1 and −Ωτ,σ,J,x ∈ (pf − 1)Z≥0, then yτ0 may additionally have have a non-zero term in

degree u−Ωτ0,σ,J,x/(p
f−1).

Then

Ψ
Gal(L/K)=ψωσ,J,x

σ,J,x = Ψ((vΩτ,σ,J,x−(pf−1)xτ )τλψUJ,x,ψ)

for any generator λψ of (l ⊗Fp
Fp)Gal(L/K)=ψ.

Notice that to make sense of λψ we use that l⊗k Fp is the regular Fp-representation of Gal(l/k). This

implies (l ⊗Fp Fp)Gal(L/K)=ψ is one dimensional over Fp for any unramified character ψ. Thus, the λψ
above above exists and is uniquely determined up to scaling.

Proof. Recall that ωσ,J,x is the character via which Gal(L/K) acts on (vΩτ,σ,J,x) (see the proof of

Lemma 5.7). Therefore, any element of Ψ
Gal(L/K)=ψωσ,J,x

σ,J,x can be written as

Y := Ψ((vΩτ,σ,J,x−(pf−1)xτ )τλψy)

for some y ∈ k[[u]] ⊗Fp
Fp. We have to show that Y = Ψ((vΩτ,σ,J,x)τλψz) for some z ∈ (u−xτ )τUJ,x,ψ.

The construction of z will be based upon the following recursion. Define

y0 = (u−xτ )τy, yi = φ(yi−1)(u
ατ )τµψ

where µψ = φ(λψ)λ
−1
ψ ∈ (k ⊗Fp Fp)× and ατ = (pΩτ◦φ,σ,J,x − Ωτ,σ,J,x)/(p

f − 1).
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By linearity, we can assume that y = eκy
′ where y′ ∈ F[[u]], κ : k → Fp is some embedding, and

eκ ∈ k ⊗Fp
Fp ∼=

∏
τ Fp is the κ-th idempotent. Since φ(eκ) = eκ◦φ−1 , we can then write yn = eκ◦φ−ny′n

with y′n ∈ Fp((u)).

Claim. One of the following must occur:

• There exists an n with yn ∈ (u−xτ )τUJ,x,ψ and yi ∈ (u−xτ )τk[[u]]⊗Fp Fp for all i ≤ n;
• yn ∈ (u−xτ )τk[[u]]⊗Fp Fp for all n and yn → 0 as n→∞;

• yn ∈ (u−xτ )τk[[u]]⊗Fp
Fp for all n and yf = ξy0 for some ξ ∈ F×

p \ {1}.

Proof of claim. Since yn−1 = eκ◦φ−n+1y′n−1 we have

yn = eκ◦φ−nuακ◦φ−n y′n−1(u
p)µψ

where y′n−1(u
p) denotes the power series obtained from y′n−1 by substituting u with up. A quick calcu-

lation also shows that

ατ = (−1)τ∈J(aτ − bτ + 1) + (e− 1− 2xτ )

for all τ . Now suppose yn−1 ∈ (u−xτ )τk[[u]]⊗Fp
Fp but not in (u−xτ )τUJ,,x,ψ. Then either y′n−1 ∈ uFp[[u]]

or y′n−1 ∈ Fp and κ ◦ φ−n ̸∈ J . In either of these cases one has yn ∈ (u−xτ )τk[[u]] ⊗Fp
Fp. Therefore,

either the first case holds or yn ∈ (u−xτ )τk[[u]]⊗Fp
Fp for all n.

From now on we assume yn ̸∈ (u−xτ )τUJ,x,ψ for any n. Replacing the sequence (yn)n by a shift
(yn+i)n with i chosen so that κ ◦ φ−i = τ0 for τ0 the embedding fixed at the beginning of the section
allows us to assume also that κ = τ0. Note that this new sequence still has every term contained in
(u−xτ )τk[[u]]⊗Fp

Fp.
Let Ni denote the u-adic valuation of yif ∈ Fp((u)). Then yif+j has u-adic valuation

pjNi + pj−1ατ0◦φ−1 + pj−2ατ0◦φ−2 + . . .+ pατ0◦φ−(j−1) + ατ0◦φ−j .

In particular, we see that

Ni := pfNi−1 +Ωτ0,σ,J,x.

If the sequence of integers Ni is strictly increasing then we must have that yn → 0. Therefore we assume
the sequence Ni is not strictly increasing.

Notice that Ni+1 = pfNi + Ωτ0,σ,J,x < Ni if and only if (pf − 1)Ni < −Ωτ0,σ,J,x. In particular,
Ni+1 < Ni implies (pf − 1)Ni+1 = (pf − 1)pfNi + (pf − 1)Ωτ0,σ,J,x < −Ωτ0,σ,J,x and so Ni+2 < Ni+1.

Since we know yn ∈ (u−xτ )τk[[u]]⊗Fp Fp for all n we know the Ni are bounded from below. Therefore,

the sequence Ni must be constant and so −Ωτ0,σ,J,x = (pf − 1)N0 and

yf = y0
(
µψφ(µψ) . . . φ

f−1(µψ)
)
.

Notice that ξ := . . . φf−1(µψ) is φ-invariant and so contained in F×
p . To finish the proof we have to

show ξ ̸= 1. For this note that the identity φ(λψ)λ
−1
ψ = µψ implies φf (λψ) = ξλψ. Therefore ξ = 1

implies λψ ∈ k ⊗Fp Fp. Since Gal(L/K) acts on λψ via ψ it would follow that ψ = 1. However, if ψ = 1

then, because −Ωτ0,σJ,x = (pf − 1)N0 with N0 ≥ 0, we would have y0 ∈ (u−xτ )τUJ,x,ψ contrary to our
previous assumption. This finishes the proof of the claim. □

To finish the proof, recall the observation made before the statement of the claim: that our assumptions
on J and xτ ensure that Ωτ,σ,J,x > (−e+ p− 1)(pf − 1)/(p− 1) for all τ . Therefore

Ωτ,σ,J,x − (pf − 1)xτ > −ep(pf − 1)/(p− 1)

for all τ and so

(6.4) yn ∈ (u−xτ )τk[[u]]⊗Fp Fp ⇒ (vΩτ,σ,J,x)τyn ∈ u−ep/(p−1)vk[[v]]⊗Fp Fp.

Now suppose the sequence (yi)i is as in the first bullet point of the claim. Set y(n) = (vΩτ,σ,J,x)τλψ
∑n−1
i=0 yi

and observe that

φ(y(n))− y(n) = (vpΩτ◦φ,J,x)τφ(λψ)

n−1∑
i=0

φ(yi)− (vΩτ,σ,J,x)τλψ

n−1∑
i=0

yi

= (vΩτ,σ,J,x)τλψ

(
n−1∑
i=0

yi+1 −
n−1∑
i=0

yi

)
= (vΩτ,σ,J,x)τλψ(yn − y0).
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By (6.4) we have φ(y(n))−y(n) ∈ u−ep/(p−1)vl[[v]]⊗Fp
Fp and so Corollary 4.7 shows we can take z = yn.

If the sequence (yi)i is as in the second bullet point, then the y(i) converge to y(∞) and we have

(vΩτ,σ,J,x−(pf−1)xτ )τλψy + φ(y(∞))− y(∞) = 0.

Since (vΩτ,σ,J,x−(pf−1)xτ )τλψy ∈ u−ep/(p−1)vl[[v]]⊗Fp Fp, the same is true of φ(y(∞))− y(∞). Therefore,
Corollary 4.7 shows we can take z = 0. Finally, if yf = ξy0 is as in the third bullet point then, since

ξ ∈ F×
p \ {1},

(vΩτ,σ,J,x−(pf−1)xτ )τλψy = φ(
y(f)

ξ − 1
)− y(f)

ξ − 1
.

Again, φ(y
(f)

ξ−1 )−
y(f)

ξ−1 ∈ u
−ep/(p−1)vl[[v]]⊗Fp Fp, so we can again take z = 0. □

Proposition 6.5. For pairs (J, x) and (J ′, x′) with J, J ′ ⊂ HomFp(k,Fp) and xτ , x′τ ∈ [0, e− 1], write

(J, x) ≤ (J ′, x′)⇔ Ωτ,σ,J,x − Ωτ,σ,J ′,x′ ∈ 2(pf − 1)Z≥0 for all τ .

Then

(1) (J, x) ≤ (J ′, x′) implies Ψσ,J,x ⊂ Ψσ,J ′,x′ .
(2) Fix a Serre weight σ = σa,b and r ∼

( χ1 ∗
0 χ2

)
. Then the set of pairs (J, x) for which

rss|IK =

(∏
τ∈J ω

aτ+1+xτ
τ

∏
τ ̸∈J ω

bτ+xτ
τ 0

0
∏
τ ̸∈J ω

aτ+e−xτ
τ

∏
τ∈J ω

bτ+e−1−xτ
τ

)
contains a unique maximal element (Jmax, xmax).

Proof. Define sτ = xτ for τ ̸∈ J and sτ = aτ − bτ + 1 + xτ for τ ∈ J . Similarly, we make sense of s′τ .
Observe that Ωτ,σ,J,x − Ωτ,σ,J ′,x′ = 2Λτ , where

Λτ =

f−1∑
i=0

pi(s′τ◦φi − sτ◦φi).

Thus, (J, x) ≤ (J ′, x′) if and only if Λτ ∈ (pf−1)Z≥0 for all τ . We also have Λτ+(pf−1)(s′τ−sτ ) = pΛτ◦φ
and so

(6.6) Ωτ,σ,J,x − Ωτ,σ,J ′,x′ − (pf − 1)(xτ − x′τ ) = Λτ + pΛτ◦φ + (pf − 1)(sτ − xτ + x′τ − s′τ ).
If Λτ◦φ > 0, then (6.6) is ≥ 0, since x′τ − s′τ ∈ [−p, 0] and sτ − xτ ≥ 0. If Λτ◦φ = 0, then Λτ =
(pf − 1)(sτ − s′τ ) and so sτ ≥ s′τ . Therefore, τ ∈ J ′ implies τ ∈ J and so

(sτ − xτ + x′τ − s′τ ) =


0 if τ ∈ J ′;

0 if τ ̸∈ J, J ′;

aτ − bτ + 1 if τ ̸∈ J ′, τ ∈ J .

We conclude again that (6.6) is ≥ 0. Since (J, x) ≤ (J ′, x′), it follows that in every case

(vΩτ,σ,J,x−(pf−1)xτ )τ l[[u]]⊗Fp Fp ⊂ (vΩτ,σ,J′,x′−(pf−1)x′
τ )τ l[[u]]⊗Fp Fp.

This shows Ψσ,J,x ⊂ Ψσ,J ′,x′ .
Part (2) has already been proved in [GLS15, 5.3.3], but in a different setting. To translate their

statement into ours, suppose (J, x) is such that

rss|IK ∼=
(∏

τ∈J ω
aτ+1+xτ
τ

∏
τ ̸∈J ω

bτ+xτ
τ 0

0
∏
τ ̸∈J ω

aτ+e−xτ
τ

∏
τ∈J ω

bτ+e−1−xτ
τ

)
(if no such (J, x) exists then there is nothing to prove). Let sτ be defined as in the first sentence of the
proof. To accommodate the notation in loc. cit. fix an embedding τ0 and set si = sτ0◦φi . Notice that
si ∈ [0, e − 1] ∪ [ri, ri + e − 1] for ri := aτ0◦φi − bτ0◦φi + 1, and so we can apply [GLS15, 5.3.3] with
N = M(s0, . . . , sf−1; 1). Combining [GLS15, 3.1.1, 3.1.2 and 5.1.2] shows that [GLS15, 5.3.3] applied in
this way produces smin

0 , . . . , smin
f−1 so that, for any j ∈ [0, f − 1],

(6.7)

f−1∑
i=0

pi(smin
i+j − si+j) ∈ (pf − 1)Z≥0

(here the indices of si and smin
i are viewed modulo f). It follows from the proposition that smin

i ∈
[0, e − 1] ∪ [ri, ri + e − 1] for each i. Define Jmax ⊂ HomFp

(k,Fp) by asserting that τ0 ◦ φi ∈ Jmax if
12



and only if smin
i ̸∈ [0, e − 1], and define xmax,τ0◦φi := smin

i if τ0 ◦ φi ̸∈ Jmax and xmax,τ0◦φi := smin
i − ri

otherwise. Then (6.7) implies that

Ωτ,σ,J,x − Ωτ,σ,Jmax,xmax
∈ (pf − 1)Z≥0

for all τ . In other words (J, x) ≤ (Jmax, xmax). Since the smin
i are independent of the chosen pair (J, x)

it follows that (Jmax, xmax) is the desired maximal pair. □

Remark 6.8. The proof of [GLS15, 5.3.3] (or more precisely, the equivalent statement of [GLS15, 5.3.1])
gives an algorithm to compute the smin

i , and therefore the maximal pair (Jmax, xmax), explicitly.

As a consequence of the previous two propositions we immediately deduce the following corollary.

Corollary 6.9. If (Jmax, xmax) is the maximal pair from part (2) of Proposition 6.5 and χ = χ1/χ2,
then

Ψσ(χ1, χ2) = Ψσ,Jmax,xmax

and

dimFp
Ψσ(χ1, χ2)

Gal(L/K)=χ−1

≤ ν +
∑
τ

{
xmax,τ + 1 if τ ◦ φ−1 ∈ Jmax

xmax,τ if τ ◦ φ−1 ̸∈ Jmax

= ν +Card(Jmax) +
∑
τ

xmax,τ ,

where ν = 0 unless χ = 1 and −Ωτ,Jmax,xmax ∈ (pf − 1)Z≥0 for one (equivalently all) τ , in which case
ν = 1.

7. Breuil–Kisin modules

We do not assume that p > 2 in this section. Let F be a finite extension of Fp, sufficiently large that
there is an embedding k ↪→ F. A Breuil–Kisin module M over F is a finite free SF := k[[u]]⊗Fp F-module
equipped with a homomorphism

φ : M⊗SF,φ SF →M

with cokernel killed by a power of E(u) ∈ SF.
1 Here φ on SF denotes F-linear extension of the the p-th

power map on k[[u]] and E(u) denotes the (reduction modulo p of the) minimal polynomial over W (k)
of π. Thus E(u) = ue.

Proposition 7.1. If r is a crystalline representation over O with Hodge–Tate weights ≥ 0 and r⊗OF ∼= r,
then there exists a Breuil–Kisin module M over F and a continuous φ-equivariant C♭-semilinear GK-
action on M⊗k[[u]] C♭ such that

(D1) σ(x)− x ∈M⊗k[[u]] u(e+p−1)/(p−1)OC♭ for all σ ∈ GK and x ∈M,
(D2) σ(x) = x for σ ∈ GK∞ and x ∈M,

and such that φ,GK-equivariantly

M⊗k[[u]] C♭ ∼= r∨ ⊗Fp
C♭,

where the Frobenius on the left hand side is that fixing r∨ (so we can identify r∨ = (M⊗k[[u]] C♭)φ=1).

Proof. This follows by applying [Bar20, 2.1.12] to the crystalline representation r∨ (note that Hodge–
Tate weights in [Bar20] are normalised to be the negative of those here so r∨ has Hodge–Tate weights
≥ 0 in the sense of loc. cit.) and base-changing along O → F. Here we also use the observation that
the image of the element µ := [ϵ]− 1 in loc. cit. modulo p generates the ideal uep/(p−1)OC♭ (cf. [Fon94,
5.1.3]), and so [π♭]φ−1(µ) modulo p generates the ideal u1+ep/(p−1)OC♭ = u(e+p−1)/(p−1)OC♭ . □

The following is (a minor alteration of) the key technical result in [GLS15].

Proposition 7.2. Suppose that r has Hodge type σa,0 and that r⊗O F is reducible. Let M be the mod p
Breuil–Kisin module associated to r as in Proposition 7.1. Then there exist integers 0 ≤ sτ , tτ ≤ p with

(7.3) sτ + tτ = aτ + e, max{sτ , tτ} ≥ aτ + 1

and an SF-basis β of M so that

φ(β) = β

(
x1(u

tτ ) (yτ )
0 x2(u

sτ )

)
1One can define Breuil–Kisin modules over more general Zp-algebras but in this paper we only need to consider p-torsion

Breuil–Kisin modules over F.
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for some x1, x2 ∈ (k ⊗Fp
F)× and yτ ∈ uδτFp[[u]], where

δτ =

{
aτ + 1 if tτ < aτ + 1;

0 if tτ ≥ aτ + 1.

Proof. As we will explain this follows from [GLS15, 5.1.5]. Notice however that in loc. cit. it is assumed
that p > 2. This requirement has been removed by the work of [Wan17] where it is shown that [GLS15,
5.1.5] remains true, provided the uniformiser π ∈ K is chosen as in [Wan17, 2.1].

It follows from [GLS15, 5.1.5] there are sτ , tτ satisfying (7.3) and a basis β of M satisfying φ(β) =

β
(
x1(u

tτ ) (y′τ )

0 x2(u
sτ )

)
for some x1, x2 ∈ (k ⊗Fp

F)× and polynomials y′τ ∈ Fp[u] as claimed, except that

possibly y′τ has a non-zero term of degree tτ if tτ < aτ + 1. A straightforward change of basis argument
allows us to remove these utτ terms at the cost of introducing terms of degree ≥ δτ . This gives the
formulation here. □

We conclude this section by explaining how one can describe the restriction of r∨ = (r ⊗O F)∨ to
GK∞ in terms of the matrices from Proposition 7.2. We do this by setting

(7.4) D =

(
d1 dd1
0 d2

)
∈ Mat(C♭ ⊗Fp

F)

with entries defined by the equations

d1 = φ(d1)x1(u
tτ ), d2 = φ(d2)x2(u

sτ ), φ(d)− d = − d2
d1x2

(u−sτ yτ ).

Then D =
(
x1(u

tτ ) (yτ )
0 x2(u

sτ )

)
φ(D) and so, if α = βD in M ⊗k[[u]] C♭ then φ(α) = α. Therefore, α is an

F-basis of r∨ = (M⊗k[[u]] C♭)φ=1 and (D2) from Proposition 7.1 implies

(7.5) σ(α) = αD−1σ(D) = α

(
σ(d1)
d1

σ(d)σ(d1)d1
− dσ(d2)d2

0 σ(d2)
d2

)
for σ ∈ GK∞ . The elements d1 and d2 can be easily be described and this allows us to compute the
characters appearing on the diagonal of (7.5). First note that, by an easy calculation, we can write

d1 = x̃1(v
−Ωτ,t) for x̃1 ∈ (l ⊗Fp F)× satisfying x̃1 = φ(x̃1)x1 and Ωτ,t =

∑f−1
i=0 p

itτ◦φi as in (3.1).
Similarly to the calculation in (5.4), we find

σ((vΩτ,t)τ )(v
−Ωτ,t)τ = (ωτ (σ)

Ωτ,t)τ =
∏
τ

ωτ (σ)
tτ

for σ ∈ GK∞ . On the other hand, x̃1 ∈ (l ⊗Fp
F)× and so GK∞ acts on x̃1 by multiplication with an

unramified character ψ1. Therefore,

σ(d1)d
−1
1 = ψ1(σ)

∏
τ

ωτ (σ)
−tτ .

Similarly with d1 replaced by d2 and tτ with sτ . We conclude that

(7.6) r∨|GK∞
∼=
(
ψ1

∏
τ ω

−tτ
τ c′

0 ψ2

∏
τ ω

−sτ
τ

)
for some cocycle c′. From this one easily deduces the following corollary; note that this is exactly the
argument used to prove Theorem 3.3 in [GLS15].

Corollary 7.7. If σa,0 ∈W cr(r) with r reducible, then σa,0 ∈W exp(rss).

Proof. Choose a finite extension E/Qp with integersO so that a crystalline Zp-representation r witnessing
σa,0 ∈ W (r) is defined over O. Take F equal the residue field of O. Enlarging E if necessary we can
assume that there is an embedding k ↪→ F so the above results apply. In particular, applying Theorem 7.1
to r produces a Breuil–Kisin module M with shape as in Proposition 7.2.

From (7.6) it follows that r|GK∞
∼=
(
ψ2

∏
τ ω

sτ
τ c

0 ψ1

∏
τ ω

tτ
τ

)
for some cocycle c and sτ , tτ satisfying (7.3).

Since restriction induces an equivalence between semi-simple representations of GK and semi-simple
representations of GK∞ (see, for example, [Bar21, 2.2.1]), it follows that

rss|IK ∼=
(∏

τ ω
sτ
τ 0

0
∏

τ ω
aτ+e−sτ
τ

)
=

(∏
τ∈J ω

aτ+1+xτ
τ

∏
τ ̸∈J ω

xτ
τ 0

0
∏
τ ̸∈J ω

aτ+e−xτ
τ

∏
τ∈J ω

e−1−xτ
τ

)
,
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where J = {τ ∈ HomFp
(k,Fp) | tτ < aτ + 1} and

xτ =

{
sτ − aτ − 1 if τ ∈ J ;
sτ if τ ̸∈ J .

Notice that τ ∈ J implies aτ + e ≥ sτ ≥ aτ + 1 and so xτ ∈ [0, e − 1] and likewise if τ ̸∈ J . It follows
that σa,0 ∈W exp(r)ss, as required. □

8. Constructing Galois actions

The goal here is to show that the GK∞ -action on r∨ described in (7.5) can be extended to a description
of the whole GK-action. We point out that Theorem 8.1 does not require the assumption that p > 2.

Theorem 8.1. Assume M is a Breuil–Kisin module over F with shape as in Proposition 7.2. Assume
additionally that

(sτ , tτ ) ̸= (e+ p− 1, 0)

for at least one τ . Then there exists a unique continuous φ-equivariant C♭-semilinear action of GK on
M⊗k[[u]] C♭ satisfying:
(D1) σ(x)− x ∈M⊗k[[u]] u(e+p−1)/(p−1)OC♭ for all σ ∈ GK and x ∈M;
(D2) σ(x) = x for σ ∈ GK∞ and x ∈M.

Furthermore, if β is a basis of M with φ(β) = βC, then this GK-action can be described concretely by
σ(β) = Cσβ for

Cσ = limn→∞
(
Cφ(C) . . . φn(C)φn(σ(C−1)) . . . φ(σ(C−1))σ(C−1)

)
∈ Mat(C♭ ⊗Fp F).

We point out that uniqueness of this GK-action can also be deduced from [GLS15, 6.1.3] (though in

loc. cit. the language of φ, Ĝ-modules is used).

Proof. As we will explain below, in most cases the theorem follows from an application of [Bar22, 11.3].
Unfortunately, these results do not apply in the special case where (sτ , tτ ) = (0, p + e − 1) for every τ .
We treat this special case directly at the end of the proof. (Note that this special case is not excluded
by the assumption in the statement since the condition on (sτ , tτ ) is ordered in the opposite way.)

For now assume (sτ , tτ ) ̸= (0, p + e − 1) for some τ . Since we also have (sτ , tτ ) ̸= (p + e − 1, 0) for
some τ , there are integers 0 ≤ qτ ≤ e+ p− 1 not all equal to e+ p− 1 such that

• (uqτ )M ⊂Mφ ⊂M for Mφ the image of the linearised Frobenius on M.

Indeed, if β is a basis of M with φ(β) = βC, then (uqτ )M is generated by φ(β)(uqτ )C−1, and so the
assertion is equivalent to asking that (uqτ )C−1 ∈ Mat(k[[u]]⊗Fp

F). Following [Bar22, 11.1], the choice of

β also allows us to define a “naive” C♭-semilinear GK-action σnaive,β on M⊗k[[u]] C♭ by C♭-semilinearly
extending the GK-action which is trivial on φ(β). Typically, σnaive,β will not be φ-equivariant. However,
[Bar22, 11.3] (and its proof) describes conditions on M which ensure φn ◦ σnaive,β ◦ φ−n converges to a

φ-equivariant C♭-semilinear GK-action on M⊗k[[u]] C♭ satisfying (D1) and (D2). To explain this notice
that if M satisfies the previous bullet point and

• σnaive,β(x)− x ∈M⊗k[[u]] u(e+p−1)/(p−1)OC♭ for every x ∈M and σ ∈ GK ,

then (M, β) defines an object in the category denoted Z̃∇σ,r
2 (F) in [Bar22, 11.2]. The assertion of [Bar22,

11.3] implies that there exists a unique GK-action σ on M ⊗k[[u]] OC♭ making (M, σ) into an object of

Y ≤h
d (F). Considering the definition of Y ≤h

2 (F) from [Bar22, 10.2] we see this is equivalent to asking
that σ satisfies (D1) and (D2). Finally, examining the proof of [Bar22, 11.3] shows that this action σ is
obtained as the limit of φn ◦ σnaive,β ◦ φ−n as claimed.

To see the formula for Cσ in the theorem note that, by definition, σnaive,β(β) = βCσ(C)−1. Therefore,

φn ◦ σnaive,β ◦ φ−n(β) = φn ◦ σnaive,β
(
βφ−1(C−1)φ−2(C−1) . . . φ−n(C−1)

)
= φn

(
βCσ(C−1)φ−1(σ(C−1))φ−2(σ(C−1)) . . . φ−n(σ(C−1))

)
= β

(
Cφ(C) . . . φn−1(C)φn(C)φn(σ(C−1))φn−1(σ(C−1)) . . . φ(σ(C−1))σ(C−1)

)
.

We’ve already seen the first bullet point holds. To apply these results we need to check the second does
also.
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Concretely, since σnaive,β(β) = βCσ(C−1), the second bullet point is asserting that Cσ(C−1) − 1 ∈
u(e+p−1)/(p−1) Mat(OC♭ ⊗Fp

F). To check this we take β a basis as in Proposition 7.2 so that

Cσ(C−1)− 1 =

(
x1(u

tτ ) (yτ )
0 x2(u

sτ )

)(
x−1
1 (σ(u)−tτ ) − 1

x1x2
(σ(yτ )σ(u)

−e−aτ )

0 x−1
2 (σ(u)−sτ )

)
− 1

=


((

u
σ(u)

)tτ
− 1

)
1

x2σ(u)sτ

(
yτ − σ(yτ )

(
u

σ(u)

)tτ)
0

((
u

σ(u)

)sτ
− 1
)

 .

For the required divisibility we use that u
σ(u) − 1 ∈ uep/(p−1)OC♭ (see the argument given in the proof of

Theorem 4.6). This clearly implies the required divisibility for the diagonal entries. For the upper right
entry, note that

yτ − σ(yτ )
(

u

σ(u)

)tτ
= yτ − σ(yτ ) + σ(yτ )

(
1−

(
u

σ(u)

)tτ)
is divisible by uδτ+ep/(p−1) because yτ is divisible by (uδτ )τ (here δτ is the integer defined in 7.2).
Therefore we just need that δτ − sτ + ep/(p− 1) ≥ (e+ p− 1)/(p− 1). This inequality follows from the
observation that (e+ p− 1)/(p− 1)− ep/(p− 1) = −e+ 1 and

δτ − sτ =

{
aτ + 1− sτ if tτ < aτ + 1, in which case aτ + 1− sτ = tτ − e+ 1 ≥ −e+ 1;

−sτ if tτ ≥ aτ + 1, in which case −sτ = tτ − aτ − e ≥ −e+ 1.

This proves the theorem under the assumption that (sτ , tτ ) ̸= (0, e+ p− 1) for at least one τ .
We conclude by addressing the case where (sτ , tτ ) = (0, e+p−1) for every τ . This case is particularly

simple because we can choose a basis β of M so that φ(β) = βC with C =
(
x1u

e+p−1 0
0 x2

)
. Indeed, a

priori, we have C =
(
x1u

e+p−1 y
0 x2

)
. Via a change of basis, we can replace C by(

1 −x
0 1

)(
x1u

e+p−1 y
0 x2

)(
1 φ(x)
0 1

)
=

(
x1u

e+p−1 y − xx2 + φ(x)x1u
e+p−1

0 x2

)
for any x ∈ k[[u]] ⊗Fp

F. If y0 = yx−1
2 and yi+1x2 = φ(yi)x1u

e+p−1, then x =
∑
i≥0 yi converges in

k[[u]]⊗Fp
F and satisfies y − xx2 + φ(x)x1u

e+p−1. Therefore, we can assume C is diagonal.

Next we show that M⊗k[[u]] C♭ can admit at most one GK-action as in the theorem. Using condition

(D2) and the calculations from the proof of Proposition 7.2 we deduce that r∨ = (M ⊗k[[u]] C♭)φ=1 is

generated by α = βD for D =
(
x̃1v

−Ω 0
0 x̃2

)
with Ω = (p + e − 1)(1 + . . . + pf−1) and x̃i = φ(x̃i)xi.

Furthermore, for σ ∈ GK∞ , we have σ(α) = α
(
ψ1(σ)

∏
τ ωτ (σ)

−(e+p−1) 0

0 ψ2(σ)

)
with ψi defined by σ(x̃i) =

x̃iψi(σ). It follows that the GK-action on α must be of the form σ(α) = α
(
ψ1(σ)

∏
τ ωτ (σ)

−(e+p−1) c(σ)

0 ψ2(σ)

)
for c : GK → F a cocycle vanishing on GK∞ . (In fact, such non-zero cocycles occur only in very specific
situations by [GLS15, 5.4.2].) But then

σ(β) = β

(
x̃1v

−Ω 0
0 x̃2

)(
ψ1(σ)

∏
τ ωτ (σ)

−(e+p−1) c
0 ψ2(σ)

)(
σ(x̃1)

−1σ(v)Ω 0
0 σ(x̃2)

−1

)
= β

((
σ(v)
v

)Ω∏
τ ωτ (σ)

−(e+p−1) x̃1σ(x̃2)
−1v−Ωc

0 1

)
.

Clearly, this GK-action only satisfies condition (D1) if c = 0, which proves uniqueness. To finish the
proof we just have to show that the limit formula in the theorem converges to a GK-action as claimed –
this GK-action will then coincide with that given in the previous formula when c = 0. But this is clear
because

Cφ(C) . . . φn(C)φn(σ(C−1)) . . . φ(σ(C−1))σ(C−1)− 1 =

((
u

σ(u)

)(e+p−1)(1+...+pn)

− 1 0

0 0

)

converges and the limit is an element of u(e+p−1)/(p−1) Mat(OC♭ ⊗Fp
F) as n → ∞, since

(
u

σ(u)

)
− 1 ∈

u(e+p−1)/(p−1)OC♭ . □
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Corollary 8.2. Suppose p > 2 and σa,0 ∈W cr(r) for r ∼=
( χ1 c

0 χ2

)
. If aτ = p−1 for each τ , then assume

χ = χ1/χ2 is not an unramified twist of the cyclotomic character. Then σa,0 ∈W exp(r).

Proof. As in Corollary 7.7 choose a finite extension E/Qp, with integers O and residue field F, so that a

crystalline Zp-representation r witnessing σa,0 ∈W (r) is defined over O. After possibly enlarging E we
can apply Theorem 7.1 to r to produce a Breuil–Kisin module M with shape as in Proposition 7.2.

We want to apply Theorem 8.1 to M. Let sτ , tτ , yτ , δτ and xi be as in Proposition 7.2. We need to
show that

(sτ , tτ ) ̸= (e+ p− 1, 0)

for at least one τ . If not, then the identity sτ + tτ = aτ + e would imply aτ = p − 1 for every τ .
From (7.6) it would also follow that χ|IK =

∏
τ ω

e+p−1
τ . However, χcyc|IK =

∏
τ ω

e+p−1
τ , so χ would be

an unramified twist of the cyclotomic character. Since we’ve assumed this isn’t the case we can apply
Theorem 8.1 to produce a GK-action on M⊗k[[u]]C♭. By uniqueness, this GK-action coincides with that
induced from the GK-action on r∨.

In the discussion after the proof of Proposition 7.2 we described a basis α = βD of r∨ = (M⊗k[[u]] C♭)φ=1

with D =
(
d1 dd1
0 d2

)
for d1 = x̃1(v

−Ωτ,t)τ , d2 = x̃2(v
−Ωτ,s)τ and

φ(d)− d = − d2
d1x2

(u−sτ yτ )τ .

Since x2 ∈ (k⊗Fp
F)× and x̃i ∈ (l⊗Fp

F)×, it follows that φ(d)− d ∈ (vΩτ,t−s+(pf−1)(δτ−sτ ))τ l[[u]]⊗Fp
F.

Using the description of the GK-action from Theorem 8.1 we will compute σ(α) for σ ∈ GK . Since
α = φ(α) = φ(β)φ(D), we have σnaive,β(α) = αφ(D−1σ(D)) and

φn ◦ σnaive,β ◦ φ−n(β) = φn ◦ σnaive,β ◦ φ−n(αD−1)

= αφn+1
(
D−1σ(D)

)
σ(D−1)

= βDφn+1
(
D−1σ(D)

)
σ(D−1).

It follows from Theorem 8.1that limn→∞ φn(D−1σ(D)) converges to a matrix Dσ with entries in F and
σ(α) = αDσ. Write x for the image of x under the reduction map OC♭⊗Fp F→ k⊗Fp F. Observe that, for

x ∈ C♭ ⊗Fp
F, convergence of φn(x) is equivalent to asking that x ∈ OC♭ ⊗Fp

F and x ∈ F. Furthermore,
limn→∞ φn(x) equals the image of x under the multiplicative section of this reduction map. Therefore,
D−1σ(D) ∈ Mat(OC♭ ⊗Fp

F) and so

Dσ ≡

(
σ(d1)
d1

σ(d)σ(d1)d1
− dσ(d2)d2

0 σ(d2)
d2

)
modulo mC♭ ⊗Fp F.

The next step is to give a simpler formula for Dσ when σ ∈ GL. In fact, in this case we claim that

(8.3) Dσ ≡
(
1 σ(d)− d
0 1

)
modulo mC♭ ⊗Fp

Fp.

To show this it suffices to show that σ(di)d
−1
i ≡ 1 modulo uep/(p−1)OC♭ ⊗Fp

F for σ ∈ GL and that

d ∈ u−(e+p−1)/(p−1)mC♭ ⊗Fp
F. Clearly the first claim implies the required congruences on the diagonal.

When combined with the second claim it also implies that σ(d)σ(d1)d1
−dσ(d2)d2

≡ σ(d)−dmodulo mC♭⊗Fp
F,

which establishes (8.3)

For the first claim note: if σ ∈ GL, then
σ(di)
di
− 1 is divisible by ϵ − 1, which we’ve already seen

generates the ideal uep/(p−1)OC♭ . For the second claim we show that r∨ = (M⊗k[[u]]C♭)φ=1 is contained

in M⊗k[[u]] u−(e+p−1)/(p−1)mC♭ . This will imply that d1d ∈ u−(e+p−1)/(p−1)mC♭ ⊗Fp
F. Since d1 is a unit

multiple of (v−Ωτ,t)τ and Ωτ,t ≥ 0, it will follow that d ∈ u−(e+p−1)/(p−1)mC♭ ⊗Fp F as desired. Take
x ∈ r∨. Then x = (unκ)m for some m ∈M⊗k[[u]] OC♭ and some nκ ∈ Q. Assume the nκ are maximal.

Since φ(x) = x it follows that (unκ)m = (upnκ◦φ)φ(m) and so φ(m) = (unκ−pnκ◦φ)m. Recall there exists
qτ ≤ e+ p− 1 with at least one inequality strict and (uqκ)M ⊂Mφ (where Mφ denotes the image of the
linearised Frobenius). Therefore

φ(m) = (unκ−pnκ◦φ−qκ)φ(m′) = φ((u(nκ−pnκ◦φ−qκ)/p)m′)

for some m′ ∈ M ⊗k[[u]] OC♭ . Injectivity of φ ensures that m ∈ (u(nκ−pnκ◦φ−qκ)/p)M ⊗k[[u]] OC♭ .
Therefore,

x ∈ (unκ+p
−1(nκ−pnκ◦φ−qκ))M⊗k[[u]] OC♭
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and so

nκ − pnκ◦φ ≤ qκ,
for all κ, since otherwise we contradict the maximality of the nκ. Therefore,

(1− pf )nκ = nκ − pnκ◦φ + p(nκ◦φ − pnκ◦φ2) + . . .+ pf−1(nκ◦φf−1 − pnκ)

≤ qκ + pqκ◦φ + . . .+ pf−1qκ◦φf−1

< (e+ p− 1)
(
1 + p+ . . .+ pf−1

)
= (e+ p− 1)

(
pf − 1

p− 1

)
.

We conclude that nκ > −(e+ p− 1)/(p− 1) and so x ∈M⊗k[[u]] u−(e+p−1)/(p−1)mC♭ as desired.
Since σa,0 ∈W exp(rss) by Corollary 7.7, we only have to show that the homomorphism GL → F

c : σ 7→ σ(d)− d modulo mC♭ ⊗Fp F.

is contained in Ψσ(χ1, χ2) – we know already that this homomorphism is obtained as the restriction of
a cocycle in GK → F(χ) and so Gal(L/K) acts by χ−1. By part (1) of Corollary 4.7 we have

c ∈ Ψ
(
(vΩτ,t−s+(pf−1)(δτ−sτ ))τ l[[u]]⊗Fp

F
)
.

As in Corollary 7.7 take J = {τ ∈ HomFp(k,Fp) | tτ < aτ + 1} and set xτ = sτ − aτ − 1 for τ ∈ J and
xτ = sτ for τ ̸∈ J . Then xτ ∈ [0, e− 1] and

(8.4) Ωτ,t−s =

f−1∑
i=0

pi
(
aτ◦φi + e− 2sτ◦φi

)
=

f−1∑
i=0

pi(aτ◦φi + 1)(−1)τ◦φ
i∈J +

f−1∑
i=0

pi(e− 1− 2xτ◦φi),

where (−1)τ∈J equals −1 for τ ∈ J and 1 otherwise. Notice this is exactly Ωτ,σ,J,x from Definition 5.2.

Since δτ − sτ = −xτ , we conclude that c ∈ Ψσ,J,x ⊂ H1(GL,Fp) for Ψσ,J,x defined in Definition 5.2. We
saw in the proof of Corollary 7.7 that

rss ∼=
(∏

τ∈J ω
aτ+1+xτ
τ

∏
τ ̸∈J ω

xτ
τ 0

0
∏
τ ̸∈J ω

aτ+e−xτ
τ

∏
τ∈J ω

e−1−xτ
τ

)
.

Therefore c ∈ Ψσa,0
(χ1, χ2) and so σa,0 ∈W exp(r). □

9. Proof of the main theorem

We are now ready to put together the proof of Theorem 5.6. As usual write r =
( χ1 c

0 χ2

)
and set

χ = χ1/χ2. First, the following lemma shows that it suffices to prove σa,0 ∈ W exp(r) if and only if
σa,0 ∈W cr(r) for any r.

Lemma 9.1. For ∗ ∈ {cr, exp}, we have σa−b,0 ∈W ∗(r) if and only if σa,b ∈W ∗(r ⊗
∏
τ ω

bτ
τ ).

Proof. For ∗ = exp, this follows immediately from the definitions. For ∗ = cr, choose a labelling
τ0, . . . , τe−1 of {κ ∈ HomQp

(K,Qp) | κ|k = τ} as in Definition 3.2. It is well known that there exists a

crystalline character χ̃ : GK → Z×
p whose reduction modulo mZp

is
∏
τ ω

bτ
τ and with

HTτi(χ̃) =

{
{bτ} if i = 0;

{0} if i = 1, . . . , e− 1.

Thus, if r is a crystalline lift witnessing σa−b,0 ∈ W cr(r), then r ⊗ χ̃ is a crystalline lift witnessing
σa,b ∈W ∗(r ⊗

∏
τ ω

bτ
τ ). □

Next we consider the degenerate situations from Lemma 6.1 and Corollary 6.2.

Lemma 9.2. If r = ψ ⊗ ( χcyc c
0 1 ) for an unramified character ψ and σ = σa,0 with aτ = p− 1 for every

τ , then σ ∈W exp(r) if and only if σ ∈W cr(r).

Proof. Corollary 6.2 showed that σ ∈W exp(r) so we need to show σ ∈W cr(r) by producing a crystalline
lift of r of Hodge type σa,0. Below we sketch the well known construction of such a lift following [GLS14,
9.4] (which treats the unramified case) and [GLS12, 5.2.9] (which treats the totally ramified case).
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Choose an indexing τ0, . . . , τe−1 of those embeddings κ : K → Qp with κ|k = τ . Since χcyc|IK =∏
τ ω

e+p−1
τ , there exists a crystalline character χ̃ : GK → Z×

p lifting ψχcyc with

HTτi(χ̃) =

{
{p} if i = 0;

{1} if i = 1, . . . , e− 1.

For any unramified character ψ̃ with ψ̃ ≡ 1 modulo mZp
, consider the Block–Kato subgroup

H1
f (GK ,Zp(ψ̃χ̃)) ⊂ H1(GK ,Zp(ψ̃χ̃))

classifying crystalline extensions of 1 by ψ̃χ̃. Any such extension has Hodge type σa,0, so we will be done

if we can show that any class in H1(GK ,Fp(ψχcyc)) is contained in the image of the reduction map

H1
f (GK ,Zp(ψ̃χ̃))→ H1(GK ,Fp(ψχcyc))

for at least one ψ̃. In fact, since every Hodge–Tate weight of χ̃ is ≥ 0, one has H1
f (GK ,Zp(ψ̃χ̃)) =

H1(GK ,Zp(ψ̃χ̃)). Therefore, this can be checked using standard techniques from Galois cohomology. □

The previous lemma allows us to assume that if σ = σa,0 with aτ = p − 1 for every τ , then r ̸=
ψ ⊗ ( χcyc c

0 1 ) for some unramified character. Therefore, Corollary 8.2 applies and we are left proving
that σa,0 ∈ W exp(r) implies σa,0 ∈ W cr(r). To do this we again have to exhibit a crystalline lift r of
r of Hodge type σa,0 and we again produce this r as an extension of two carefully chosen crystalline
characters. Since σa,0 ∈W exp(r), there is a maximal pair (Jmax, xmax) as in Proposition 6.5 so that

r =

(
ψ1

∏
τ∈Jmax

ω
aτ+1+xmax,τ
τ

∏
τ ̸∈Jmax

ω
xmax,τ
τ c

0 ψ2

∏
τ ̸∈Jmax

ω
aτ+e−xmax,τ
τ

∏
τ∈Jmax

ω
e−1−xmax,τ
τ

)
and c ∈ Ψσ(χ1, χ2)

Gal(L/K)=χ−1

. To produce the crystalline lift of r choose an indexing τ0, . . . , τe−1 of
those embeddings κ : K → Qp with κ|k = τ . We consider crystalline extensions

r =

(
χ̃1 C
0 χ̃2

)
for crystalline characters χ̃1 and χ̃2 with τ0-Hodge–Tate weights

(HTτ0(χ̃1),HTτ0(χ̃2)) =

{
(aτ + 1, 0) if τ ∈ Jmax;

(0, aτ + 1) if τ ̸∈ Jmax.

For the other embeddings we require (HTτj (χ̃1),HTτj (χ̃2)) equal (1, 0) for j = 1, . . . , xmax,τ and equal

(0, 1) for j = xmax,τ+1, . . . , e−1. Then we have χ̃1|IK ∼=
∏
τ∈Jmax

ω
aτ+1+xmax,τ
τ

∏
τ ̸∈Jmax

ω
xmax,τ
τ mod mZp

.

Thus, replacing χ̃1 by an unramified twist we can further assume χ̃1 lifts χ1. Similarly, we can assume
χ̃2 lifts χ2.

Any such extension r has Hodge type σa,0 and the cocycles C defining such an extension are described

by the Bloch–Kato subspace H1
f (GK ,Zp(χ̃1χ̃

−1
2 )) ⊂ H1(GK ,Zp(χ̃1χ̃

−1
2 )). Let Q′ denote the image of

this Bloch–Kato subspace under H1(GK ,Zp(χ̃1χ̃
−1
2 ))→ H1(GK ,Fp(χ)). We claim

dimFp
Q′ = ν′ +

∑
τ

{
xmax,τ + 1 if τ ∈ Jmax

xmax,τ if τ ̸∈ Jmax

= ν′ +Card(Jmax) +
∑
τ

xmax,τ ,

where ν′ = 0 unless χ = 1 in which case ν′ = 1. To see this note this dimension is the sum of the dimension
of the p-torsion in H1(GK ,Zp(χ̃1χ̃

−1
2 )) (which is ν′) and the Qp-dimension of H1(GK ,Qp(χ̃1χ̃

−1
2 ))f . It

follows from [Nek93, 1.24] that this latter Qp-dimension is precisely the number κ : K → Qp for which the
κ-Hodge–Tate weight of χ̃1 is greater than the κ-Hodge–Tate weight of χ̃2. Examining the Hodge–Tate
weights of χ̃1 and χ̃2, we see this number is precisely the sum in the second part of the claimed formula.

Write Q for the image of Q′ under the injection H1(GK ,Fp(χ)) ↪→ H1(GL,Fp). It follows from

Corollary 8.2 that any element of Q is contained in Ψσ(χ1, χ2)
Gal(L/K)=χ−1

. Corollary 6.9 implies that

the dimension of Q is at least the dimension of Ψσ(χ1, χ2)
Gal(L/K)=χ−1

since ν = 1 from Corollary 6.9

implies the ν′ defined above equals 1. Therefore, Q = Ψσ(χ1, χ2)
Gal(L/K)=χ−1

and we can choose C so
that r = r ⊗Zp

Fp as desired. This finishes the proof of Theorem 5.6.

It follows from these results that Corollary 6.9 can be improved as follows.
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Corollary 9.3. If (Jmax, xmax) is the maximal pair from part (2) of Proposition 6.5 and χ = χ1/χ2,
then

Ψσ(χ1, χ2) = Ψσ,Jmax,xmax

and

dimFp
Ψσ(χ1, χ2)

Gal(L/K)=χ−1

= ν′ +Card(Jmax) +
∑
τ

xmax,τ ,

where ν′ = 0 unless χ = 1 in which case ν′ = 1.

10. Explicit comparison with Dembèlè–Diamond–Roberts

When K/Qp is unramified [DDR16] define an alternative explicit set of weights WDDR(r) using local
class field theory. The remainder of this paper will be devoted to proving the following theorem.

Proposition 10.1. Suppose p > 2 and K/Qp is unramified. Then W exp(r) =WDDR(r).

As mentioned in the introduction, this follows from the results above and those of [CEGM17], since
both sets have the same description in terms of crystalline lifts. In the spirit of this paper, we will instead
give a direct proof of the equality using a reciprocity law of Brückner–Shaferevich–Vostokov (see [Vos79,
Thm. 4]) without reference to any p-adic Hodge theory. As a consequence we get an alternative proof of
the conjecture of [DDR16] when p > 2.

We begin by recalling the description of WDDR(r). For this we can suppose r : GK → GL2(Fp) is
reducible (when r is irreducible W exp(r) = WDDR(r) is essentially true by definition). As before, we
write

r ∼
(
χ1 c
0 χ2

)
for characters χ1, χ2 : GK → GL2(Fp). Set χ := χ1χ

−1
2 and write

χ = ψ
∏

τ∈HomFp (k,Fp)

ωaττ ,

where ψ is an unramified character and aτ ∈ [1, p] with aτ < p for at least one τ . Recall that this uniquely
determines the aτ . For a fixed τ : k ↪→ Fp, we also let λτ,ψ denote a basis of the one-dimensional Fp-
vector space (l ⊗k,τ Fp)Gal(L/K)=ψ. As before, let π denote a uniformiser of K and let π1/(pf−1) denote
a (pf − 1)-th root of π in a fixed algebraic closure.

Construction 10.2. Write ϖ := π1/(pf−1) and consider the homomorphism

εϖr : l ⊗Fp
Fp → O×

L ⊗Zp
Fp;

a⊗ b 7→ EAH([a]ϖr)⊗ b.

with EAH as defined in Section 4. In [DDR16] an explicit basis of H1(GK ,Fp(χ)) is defined as follows.

For each τ : k ↪→ Fp, we will define an embedding τ ′ and an integer n′τ . Recall the definition of Ωτ,a from
(3.1). If aτ◦φ ̸= p, then

• τ ′ := τ ◦ φ and n′τ = Ωτ◦φ,a.

However, if aτ◦φ = p, then let j equal the smallest integer > 1 with aτ◦φj ̸= p− 1 and set

• τ ′ := τ ◦ φj and n′τ = Ωτ◦φj ,a − (pf − 1).

Then we define

uτ := ε
ϖn′

τ
(λτ ′,ψ) ∈ O×

L ⊗Z Fp,

for all τ ∈ HomFp
(k,Fp). If χ = 1, we additionally define utriv := ϖ ⊗ 1 ∈ O×

L ⊗Z Fp. If χ is cyclotomic,
we additionally define ucyc := ε

ϖp(pf−1)/(p−1)(b⊗ 1), where b ∈ l is any element with Trl/Fp
(b) ̸= 0.

Lemma 10.3. The elements {uτ | τ ∈ HomFp
(k,Fp)}, together with utriv if χ is trivial and ucyc if χ is

cyclotomic, forms a basis of the Fp-vector space

Uχ :=
(
L× ⊗ Fp

)Gal(L/K)=χ
.

Proof. See [DDR16, Theorem 5.1]. □
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The isomorphism Gab
L
∼= L̂× of local class field theory induces an identification

H1(GL,Fp) = HomFp
(L× ⊗Z Fp,Fp)

under which H1(GK ,Fp(χ)) = H1(GL,Fp)Gal(L/K)=χ−1

identifies with the Fp-linear dual of Uχ. Thus,

we can define a subspace of H1(GK ,Fp(χ)) in terms of the vanishing of cocycles on certain elements of
the basis above as follows.

Definition 10.4. Fix a Serre weight σ = σa,b and write rτ := aτ − bτ + 1. Assume σ ∈ W exp(rss). It

follows that there exists a J ⊂ HomFp
(k,Fp) with

(10.5) χ1|IK =
∏
τ∈J

ωaτ+1
τ

∏
τ ̸∈J

ωbττ , χ2|IK =
∏
τ ̸∈J

ωaτ+1
τ

∏
τ∈J

ωbττ

and let (Jmax, xmax) be the maximal subset in the sense of Proposition 6.5. (Recall we are assuming e = 1
and we must have xτ = 0 for all τ and similarly for xmax.) In [DDR16, §7.1] a cardinality-preserving
shift function µ : ℘

(
HomFp

(k,Fp)
)
→ ℘

(
HomFp

(k,Fp)
)
is defined on subsets of HomFp

(k,Fp). Then we
define

LDDR
σ (χ1, χ2) ⊆ H1(GK ,Fp(χ))

to be the subspace consisting of those cocycles f ∈ H1(GK ,Fp(χ)) with
• f(uτ ) = 0 for all τ ̸∈ µ(Jmax).
• f(ucyc) = 0 if χ = χcyc except when, additionally, Jmax = HomFp

(k,Fp) and rτ = p for all τ , in
which case we have no requirement at ucyc.

Remark 10.6. The shift function µ has a rather involved construction which, for the time being, we will
not need. The only point where the actual definition of µ is used in the assertions preceding Remark 12.3.

In other words, if cτ ∈ H1(GL,Fp) denotes the Fp-dual of uτ , and similarly for ctriv and ccyc, then
LDDR
σ (χ1, χ2) is the span of the cτ for τ ∈ µ(Jmax), together with ctriv if χ = 1 and ccyc if χ = χcyc,

Jmax = HomFp
(k,Fp) and rτ = p for all τ .

Definition 10.7. For r ∼
( χ1 c

0 χ2

)
as above, the set WDDR(r) is defined as follows. We have σ = σa,b ∈

WDDR(r) if and only if

(1) σ ∈W exp(rss) and
(2) [c] ∈ LDDR

σ (χ1, χ2).

11. Vostokov’s formula

In this section we recall the explicit reciprocity laws described in [Vos79] which requires p > 2. As in
the previous section, local class field theory allows us to identify

H1(GL,Fp) = HomFp
(L× ⊗Z Fp,Fp).

Fix a primitive p-th root of unity ϵ1 ∈ L. Then, for α, β ∈ L× ⊗Z F×
p , we write

c(α, β) := fβ(α),

where fβ : GL → Fp denotes the image of β under the Kummer map L×⊗ZFp = H1(GL, µp(L)⊗Fp
Fp) =

H1(GL,Fp). Here the second equality comes from the identification µp(L) = Fp induced by ϵ1, so that
concretely c(α, β) is defined so that

σα(β
1/p)β−1/p = ϵ

c(α,β)
1

for any p-th root β1/p of β and σα ∈ GL any element mapped onto α by GL → Gab
L → L̂×.

Theorem 11.1. Let LAH denote the inverse of EAH : vW (l)[[v]]
∼−→ 1+vW (l)[[v]] and let z(v) ∈W (l)[[v]]

be such that z(ϖ) = ϵ1. For A,B ∈W (l)((v))×, write

A = va[θ]ϵ, B = vb[θ′]η

with ϵ, η ∈ 1 + vW (l)[[v]] and θ, θ′ ∈ l×. Set
(11.2)

γ = resv

((
LAH(ε(v))

dLAH(η(v))

dv
− LAH(ε(v))dlog(B(v)) + LAH(η(v))dlog(A(v))

)(
1

z(v)p − 1

))
,
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where resv(x) denotes the coefficient of v−1 in x ∈W (l)((v)) and dlog denotes the logarithmic derivative
1

x(v)
d
dvx(v). Then

c(A(ϖ), B(ϖ)) = TrW (l)/Zp
(γ) modulo p.

Proof. This is [Vos79, Theorem 4.]. □

The following form of this result is what we will use in our proofs.

Corollary 11.3. Also write EAH for the base-change of the isomorphism vW (l)[[v]]
∼−→ 1 + vW (l)[[v]]

along ⊗ZpFp. Then, for x, y(z(v)p − 1) ∈ vl[[v]]⊗Fp Fp, we have

c(EAH(x)|v=ϖ, EAH(y(z(v)p − 1))|v=ϖ) = Trl⊗FpFp/Fp
(γ0),

where γ0 denotes the constant term2 of∑
m≥0

(
yφm

(
v
d

dv
(x)

))
−
∑
m≥1

(
1

z(v)p − 1

)(
xφm

(
v
d

dv
(y(z(v)p − 1))

))
.

Proof. First suppose x, y ∈ vl[[v]]. Then Theorem 11.1 implies the assertion with γ0 replaced by

resv

((
1

z(v)p − 1

)(
x
d

dv
((z(v)p − 1)y)− xdlog

(
EAH(y(z(v)p − 1))

)
+ (z(v)p − 1)ydlog

(
EAH(x)

)))
.

We compute

dlog
(
EAH(x)

)
= dlog exp

∑
m≥0

φm

pm
(x)

 =
d

dv

∑
m≥0

φm

pm
(x)

 = v−1
∑
m≥0

φm
(
v
d

dv
(x)

)
,

where the last equality follows from the identity v d
dv ◦ φ

m = pmφm ◦ v d
dv . Using this we can rewrite the

above residue as the residue of(
1

z(v)p − 1

)x d
dv

(y(z(v)p − 1))− x

v−1
∑
m≥0

φm
(
v
d

dv
(y(z(v)p − 1))

)+ y

v−1
∑
m≥0

φm
(
v
d

dv
(x)

)
=

(
−x

z(v)p − 1

)v−1
∑
m≥1

φm
(
v
d

dv
(y(z(v)p − 1))

)+ v−1
∑
m≥0

(
yφm

(
v
d

dv
(x)

))
.

This is precisely the constant term of γ0. It follows that the identity holds for general x, y ∈ vl[[v]]⊗Fp Fp
by linearity. □

12. Proof of Proposition 10.1

Suppose r =
( χ1 c

0 χ2

)
and write χ = χ1/χ2. To prove W exp(r) =WDDR(r), it suffices to show that

LDDR
σ (χ1, χ2) = Ψσ(χ1, χ2)

Gal(L/K)=χ−1

for each Serre weight σ with σ ∈W exp(rss). Since the analogue of Lemma 9.1 also holds with ∗ = DDR,
we can assume σ = σa,0. Then σ ∈ W exp(rss) implies the existence of J ⊂ HomFp

(k,Fp) so that (10.5)
holds. Write (Jmax, xmax) for the maximal such subset from Proposition 6.5. Since e = 1, we have that
xmax,τ = 0 for all τ . Let ψ be the unramified character so that χ−1 = ψωJmax,xmax

; recall ωJmax,xmax
is

the character from Remark 5.3.

The degenerate case. First, we treat the case where Jmax = HomFp
(k,Fp) and aτ = p−1 for each τ . Then

Lemma 6.1 implies Ψσ(χ1, χ2)
Gal(L/K)=χ−1

= H1(GK ,Fp(χ)). Note that µ is cardinality preserving, so

that µ(Jmax) = HomFp
(k,Fp) in this case. Then Lemma 10.3 implies LDDR

σ (χ1, χ2) = H1(GK ,Fp(χ)),
so we are done in this case.

2By constant term we mean the image of the Laurent series under the Fp-linear extension of the Fp-linear map l((v)) → l

sending the series onto its constant term. After identifying l((v))⊗Fp Fp =
∏

τ Fp((v)), this becomes the constant term in

each coordinate.
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The non-degenerate cases. For the rest of the proof we can assume that either Jmax ̸= HomFp
(k,Fp) or

aτ < p− 1 for some τ . To simplify notations we set

Ωτ = Ωτ,σ,Jmax,xmax

and note that, due to the assumptions on Jmax and aτ , we have Ωτ > −p(pf − 1)/(p− 1).
Having excluded the degenerate case above, we note that it follows from the definitions that

dimFp

(
LDDR
σ (χ1, χ2)

)
= ν′ +Card(Jmax),

where ν′ = 1 if χ = 1 and 0 otherwise. Corollary 9.3 therefore shows that Ψσ(χ1, χ2)
Gal(L/K)=χ−1

and
LDDR
σ (χ1, χ2) have the same Fp-dimension. Therefore, it suffices to show that

Ψσ(χ1, χ2)
Gal(L/K)=χ−1

⊆ LDDR
σ (χ1, χ2).

For α ∈ L×, let σα ∈ GL be an element mapped onto α by GL → Gab
L → L̂×. Then, since Ψσ(χ1, χ2) =

ΨJmax,xmax
, the value of an element in Ψσ(χ1, χ2) at σα is computed by

c
(
α,EAH((vΩτ )τ (z(v)

p − 1)x)|v=ϖ
)

for some x ∈ l[[u]] ⊗Fp Fp. The definition of LDDR
σ (χ1, χ2) therefore implies that the desired inclusion

will follow from

(V1) c
(
EAH(vnκ′λκ′,ψ)|v=ϖ, EAH((vΩτ )τ (z(v)

p − 1)x)|v=ϖ
)
= 0 for κ ̸∈ µ(Jmax);

(V2) c
(
EAH(bvp(p

f−1)/(p−1))|v=ϖ, EAH((vΩτ )τ (z(v)
p − 1)x)|v=ϖ

)
= 0 for some b ∈ l with Trl/Fp

b ̸=
0,

for every x ∈ l[[u]]⊗Fp Fp. In fact, in view of Proposition 6.3, we can assume that for a fixed τ0 : k → Fp
we have either

• x = λτ,ψ whenever τ ◦ φ−1 ∈ Jmax, or
• x = λτ0,ψv

−Ωτ0 if ψ = 1 and −Ωτ0 ∈ (pf − 1)Z≥0.

Restricting to these x’s will simplify some of the computations.

Step 1: The vanishing in (V2) always occurs. Since Ωτ > −p(pf − 1)/(p− 1), we have

(12.1) (vΩτ )τ (z(v)
p − 1)x ∈ vl[[v]]⊗Fp Fp.

Therefore, Corollary 11.3 computes the value in (V2) as the trace of the constant term of∑
m≥0

(
(vΩτ )τxφ

m

(
v
d

dv
(bvp(p

f−1)/(p−1))

))
−
∑
m≥1

(
1

z(v)p − 1

)(
bvp(p

f−1)/(p−1)φm
(
v
d

dv
((vΩτ )τ (z(v)

p − 1)x)

))

Using that Ωτ > −p(pf − 1)/(p − 1), we see that this is an element of vl[[v]] ⊗Fp Fp. Therefore, the
constant term vanishes.

Step 2: A formula for the value in (V1). Establishing the vanishing in (V1) will be more involved. We
may assume for the remainder of the proof that κ /∈ µ(Jmax). We have already observed (12.1) that
(vΩτ )τ (z(v)

p − 1)x ∈ vl[[v]] ⊗Fp
Fp. We also have vnκ′λκ′,ψ ∈ vl[[v]] ⊗Fp

Fp. Therefore, Corollary 11.3
computes the value in (V1) as the trace of the constant term of
(12.2)

∑
m≥0

(vΩτ )τxφ
m

(
v
d

dv
(vn

′
κλκ′,ψ)

)
︸ ︷︷ ︸

(Am)

−∑
m≥1


(

1

z(v)p − 1

)
vn

′
κλκ′,ψφ

m

(
v
d

dv
((vΩτ )τ (z(v)

p − 1)x)

)
︸ ︷︷ ︸

(Bm)


for κ ̸∈ µ(Jmax). To finish the proof of Proposition 10.1 we will establish the vanishing of the constant
term of (12.2) by considering the constant terms of each of the (Am) and (Bm)’s.
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Step 3: Vanishing constant terms in (Am). First, suposem ≥ 0 and assume x = λτ,ψ with τ◦φ−1 ∈ Jmax.
Since φm(λκ′,ψ) = λκ′◦φ−m,ψ, we can write (Am) as

n′κλτ,ψλκ′◦φ−m,ψv
Ωτ+p

mn′
κ .

Therefore (Am) has a non-zero constant term only if

• pmn′κ +Ωτ = 0
• τ = κ′ ◦ φ−m

Writing τ ′ = τ ◦ φ−1, we see that τ ′ ∈ Jmax and Ωτ ′ = pΩτ + (pf − 1)rτ ′ . Rewriting the two conditions
above for τ ′, we obtain pm+1n′κ = −Ωτ ′ +(pf −1)rτ ′ and κ′ = τ ′ ◦φm+1. Then it follows from [CEGM17,
3.6.7] that this implies κ ∈ µ(Jmax), giving the desired contradiction. (To apply this proposition to our
situation we note that in loc. cit. τ0 is fixed and τ0 ◦ φi is written τi. Furthermore, n′τ0◦φi is written

n′i and the value ξi from loc. cit. is precisely −Ωτ0◦φi + δJmax
(τ0 ◦ φi)rτ0◦φi(pf − 1) with δJmax

the
characteristic function for Jmax on all embeddings.)

Remark 12.3. This is where the precise definition of the shift function µ from the definition of LDDR
σ (χ1, χ2)

is used.

The other case is when ψ = 1, −Ωτ0 ∈ (pf − 1)Z≥0, and x = λτ0,ψv
−Ωτ0 . Then (Am) evaluates to

n′κλτ0,ψλκ′◦φ−m,ψv
pmn′

κ which is clearly contained in vl[[v]]⊗Fp Fp. Thus, the vanishing of the constant
term here is clear.

Step 4: Vanishing residues of (Bm). Assume m ≥ 1 and x = λτ,ψ with τ ◦ φ−1 ∈ Jmax. Since z(v)
p − 1

is a p-th power in l[[v]], we have d
dv (z(v)

p − 1) = 0 in l[[v]]. Therefore, we can rewrite (Bm) as

Ωτλκ′,ψλτ◦φ−m,ψ(z(v)
p − 1)p

m−1vn
′
κ+p

mΩτ .

We may assume κ′ = τ ◦φ−m since λκ′,ψλτ◦φ−m,ψ is zero otherwise. Since z(v)p−1 has v-adic valuation

p(pf − 1)/(p− 1), it suffices to show that

(12.4) (pm − 1)

(
p(pf − 1)

p− 1

)
+ n′κ + pmΩτ > 0.

Using that n′κ ≥ (pf − 1)/(p− 1) (see [CEGM17, 3.6.4]) and Ωτ > −p(pf − 1)/(p− 1), we have

(pm − 1)

(
p(pf − 1)

p− 1

)
+ nκ′ + pmΩτ >

(
pf − 1

p− 1

)(
p(pm − 1) + 1− pm+1

)
= −(pf − 1).

On the other hand, since κ′ = τ ◦ φ−m, it follows that

ω
n′
κ

κ′ = ω−Ωτ
τ = ω−pmΩτ

κ′

and so n′κ + pmΩτ ≡ 0 modulo pf − 1. This, combined with the previous inequality, implies

(12.5) (pm − 1)

(
p(pf − 1)

p− 1

)
+ n′κ + pmΩτ ≥ 0.

Thus, to prove (12.4) we only have to show we cannot have an equality in (12.5) when m ≥ 1. However,
equality would imply n′κ is divisible by p and this is not the case (for example, by [CEGM17, 3.6.1]).

The other possibility is when ψ = 1, −Ωτ0 ∈ (pf − 1)Z≥0, and x = λτ0,ψv
−Ωτ0 . However, in this case

(Bm) evaluates to zero so there is nothing to compute.
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