EXPLICIT SERRE WEIGHTS FOR GL, VIA KUMMER THEORY

ROBIN BARTLETT & MISJA F.A. STEINMETZ

ABSTRACT. We give an explicit formulation of the weight part of Serre’s conjecture for GLg2 using
Kummer theory. This avoids any reference to p-adic Hodge theory. The key inputs are a description of
the reduction modulo p of crystalline extensions in terms of certain “Gg-Artin—Scheier cocycles” and
a result of Abrashkin which describes these cocycles in terms of Kummer theory.

An alternative explicit formulation in terms of local class field theory was previously given by
Dembélé-Diamond—-Roberts in the unramified case and by the second author in general. We show
that the description of Dembélé-Diamond—Roberts can be recovered directly from ours using the ex-
plicit reciprocity laws of Briickner—Shaferevich—Vostokov. These calculations illustrate how our use of
Kummer theory eliminates certain combinatorial complications appearing in these two papers.
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1. INTRODUCTION

Overview. Serre conjectured in that every continuous irreducible odd representation p : Gg —
GL2(F,) arose as the reduction modulo p of the Galois representation attached to a modular form.
Furthermore, Serre predicted the possible weights of the relevant modular forms in terms of the local
representation mG@p' As the following example illustrates, the recipe is extremely explicit. Suppose

~k
— cyve C
p|1@p~("0y 1), 0<k<p-—1

with X,y the mod p cyclotomic character and Ip, C Gg, the inertia subgroup. Then Serre expected
that p would be modular of weight £ + 1. The one exception is when k = 1; in this case p is modular of
weight 2 if and only if the class of ¢ is peu ramifié, i.e. contained in the image of the Kummer map

Z; ®Zp IF‘p — Hl(GQp7FP(YCyc))'
Otherwise p will be modular of weight p + 1.

Generalisations of this weight recipe have been made in with Q replaced by a totally
real field . When p|g,. is semisimple at each prime v of F* dividing p this is an immediate extension of
Serre’s description. However, the more general setup requires considerably more complicated constraints
on the extension classes. The previously mentioned conjectures give a description of these extension

classes in terms of reductions of crystalline representations. In a series of papers [GK14; BGG13; New14],
culminating in |[GLS15], these conjectures have essentially been proven. In particular, for p > 2 and a
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totally real field F', the possible weights of a modular representation p: Gy — GL2(F,) can be described
in terms of a set of “local” Serre weights W (p|c ., ) defined in terms of Hodge-Tate weights of crystalline
lifts of p|g,, at places v of F' diving p. This is explained in detail in Section

This description of the weights in terms of crystalline lifts, while conceptually appealing, is neither
explicit nor computable. The goal of this paper is to give an alternative description in the spirit of Serre’s
original conjecture, using the Kummer map. As a consequence, we obtain an explicit formulation of the
weight part of Serre’s conjecture which avoids any mention of p-adic Hodge theory.

Crystalline lifts and our main result. To achieve this goal we are reduced to the purely local problem
of explicitly describing W< (¥) for any continuous 7 : Gx — GLa(F,) with K/Q, a finite extension. The
results of |[GLS15| give such an explicit description when 7 is semisimple and in general show that
We(F) € W (7). See Section [3]

To state our main result let f denote the residue degree of K over Q, and fix a uniformiser 7 € K,
as well as a (p/ — 1)-th root /@' =1 in an algebraic closure. Set L equal the (p/ — 1)-th unramified
extension of K (7r1/ (pffl)). Then L contains the primitive p-th roots of unity. If [ denotes the residue
field of L the Artin—Hasse exponential defines an isomorphism of Z,-modules

vW (D[] = 1+ oW @)[[v]]

sending f — >, 5 (“D;Ef)) for ¢ the Z,-linear endomorphism of W (I)[[v]] given by v — vP and the
lift of Frobenius on W(l). Composing with evaluation at v = 7/ =1) produces a homomorphism
oW (I)[[v]] = 14 m, and applying ®r,F, gives a homomorphism

ol[[v]] @, Fp — L* @7 F, = H (G, Fp)

with the last identification coming via Kummer theory from a fixed choice of primitive p-th root of unity
in L. We extend this to a surjective homomorphism

Uy : I[[v] ®r, Fp — L @z F, = H'(GL,Fy)

by choosing any homomorphism ¢ : | — Z/pZ and mapping = € [ onto 7¥@)/® =1 See Section |4 for
more details on these constructions.
Then our explicit version of the weight part of Serre’s conjecture is as follows.

Theorem 1.1. Suppose p > 2 and 7 : Gk — GLo(F,) is continuous with ¥ = (Xol XCZ ) Then there exists
an explicit F,-subspace of U[[v]] ®r, F), depending on o and 7|1, only, whose image under Uy we will
denote by ¥, (x1,Xx2), such that o € W (F) if and only

(1) o € W(T°) and

(2) cla, € Yolx1,X2)-

This result is Theorem and allows us to view the subspace ¥, (x1,x2) as extending the notion of
peu ramifié classes in Serre’s original conjecture.

Since the map Wy has a large kernel, there are many possible descriptions of the subspace defining
U, (x1,Xx2). For example, the results from Section |§| describe a constant C, € I[[v]] ®F, F, so that
Wo(x1,x2) = Vo(Coll[u]] ®F, Fp) for u = vP’ =1, In fact, we have the following even more explicit
description.

Theorem 1.2. Assume that x1/x2 is not equal the trivial character or an unramified twist of the
cyclotomic character. Let e denote the ramification degree of K/Q,. For each T € HomFP(k,Fp) and
n € [0,e — 1], there exist elements u, , € l[[v]] ®F, F, depending on o and 7°|r,.. Then there ezists a
unique pair (J,z) with J C Homg (k,F,) and z = (:ET)T:kHFp with z, € [0,e — 1] such that

~+1 3 -leJ;
Uo (X1, X2) = spang {\I'o(um) |n< {x LA }

T, ifTop™t ¢ J.
In fact, these Uo(ury) form a basis of Yo (x1,X2)-

The assumptions made on x1/x2 here are only for simplicity; for the complete statement we refer to
Proposition [6.3] and We emphasise that, even though the above theorems assert only that various
subspaces or elements exist, in the body of the paper we give explicit formulae for all these objects.
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Relation to Dembélé—Diamond—Roberts. The idea of giving a completely explicit formulation of
the weight part of Serre’s conjecture was first addressed in [DDR16|. They assume K/Q, is unramified
and, in this setting, formulated a conjectural description of W (7) using local class field theory to
describe subspaces of H!(Gx,Fp(x1/x2)). These predictions were subsequently proven in [CEGM17]|.
In [Ste22] the second author showed that when K/Q, ramifies it is still possible to give an explicit
description along the lines of [DDR16] and prove the equivalence of this description to W (7).

In each of [DDR16} Ste22] the relevant subspaces of H (G, Fp(x1/x2)) are described by first exhibit-
ing a basis of H'(Gk,F,(x1/x2)) and then defining the subspaces as the span of certain elements of this
basis. One issue with this approach is that, in certain boundary situations, deciding which basis elements
should be included in the subspace requires a combinatorial recipe which is much more complicated than
that in Theorem [1.2] Even in the unramified case this recipe (see Section is rather involved. In the
presence of ramification finding a simpler and more direct description for which basis elements are to be
included becomes a difficult combinatorial problem which is unlikely to have a straightforward general
solution (see, for example, [Ste20, Ch. 7] where simpler descriptions are given under several simplifying
assumptions). One of the main motivations for this paper was to circumvent these complications.

On the other hand, one can wonder whether Theorem could be used to recover the results of
[DDR16] in the unramified case. We do this in the last part of the paper, using the explicit reciprocity
law of Briickner—Shafervich—Vostokov to pass between our Kummer theoretic description and that given
in terms of local class field theory.

Proposition 1.3. Assume K/Q, is unramified and let LYP®(x1,x2) C HY(Gk,Fp(x1/x2)) denote the
subspace defined in [DDR16] (see Section[1(] for more details). Then

LPPR(yy, ys) = \Ija(Xl,XQ)Gal(L/K):Xz/Xl
under the identification H'(Grx,Fp(x1/x2)) = Hl(GLan)Gal(L/K):)Q/Xl.

Of course this proposition follows immediately given that both subspaces ¥, (x1, XQ)Gal(L/ K)=x2/x1
and LPPR (1, x2) have the same interpretation in terms of crystalline lifts. However, in the spirit of this
entire paper, our calculations avoid any p-adic Hodge theoretic description. In particular, our calculations
give an alternative proof of the results in [DDR16] when p > 2. We believe it is possible to use a strategy
similar to the one we have used here to give a direct comparison of the results of this paper to the results
of [Ste22] in the ramified case.

Method of proof. To prove Theorem[I.1] we need to show that, if 7 admits a crystalline lift with Hodge-
Tate weights corresponding to o, then this imposes significant conditions on 7 which can ultimately be
formulated in terms of the Artin—-Hasse exponential. This is done in three steps:

Step 1. This uses the integral p-adic Hodge theory developed in [GLS15|. If r is a crystalline lift of 7
witnessing o € W (7), then |[GLS15| gives a description, in terms of o, of the shape of the reduction
modulo p of the Breuil-Kisin module 91 associated to r. Here M is a finite free k[[u]] @, Fp-module
equipped with a semi-linear Frobenius endomorphism, and |GLS15| describes the matrix of this endo-
morphism in terms of a particular choice of basis (see Proposition . Set Ko = K(n'/P7) for n!/P™
a compatible system of p-th power roots of # € K. Then 91 and T|gy,, are related using the existence
of a ¢, Gi__-equivariant identification

M Dy C” =7 @5, C,

where C” denotes a specific algebraic closure of k((u)) and Gk acts trivially on 9. In particular,
?V|GKOO =M ®F, C*)¥=1. Concretely, if 3 is a basis of M and o = BD generates 7’ (so that D is a
matrix such that ¢(D~1)D equals the matrix of the Frobenius relative to 3) then the G _-action on «
is given by
o(a) = ac(D)D™ .
From this we deduce a statement of the following shape: if 7 ~ (% XC2 ), then there exists a subspace
UAS(yy,x2) € HY Gk, Fy(x1/x2)) defined in terms of Artin-Scheier cocycles so that o € W€ ()
implies
C‘GKOC € W?S(XlaXQ)-

We emphasise that everything so far follows, more or less, immediately from |[GLS15]. In the unramified

case this is the essential tool used to prove the conjecture of [DDR16] in [CEGM17].
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Step 2. The second step is to upgrade the description of the Gx__-action on 7, given in terms of I, to a
description of the G'x-action. For this we first recall that the action of Gi_ on C” naturally extends to a
G k-action. Therefore, C”-semi-linearly extending the G x-action on 7" ®F, C” we obtain a p-equivariant
G k-action on ﬁ@k[[u” C”. Since the Gg-action on 7 comes from the reduction modulo p of a crystalline
representation this Gg-action must satisfy the following divisibility

o(m) —m € M gL uletr= /=D,

for all 0 € Gg and m € 9.

On the other hand, ideas from [Bar22| give a procedure which, in good cases, constructs an alternative
G g-action on ﬁ@k[[u” C”. This is done as follows: choose a basis 3 of 9 and define a “naive” G g-action
Onaive,8 Ol ﬁ@k[[u]] C"® by semi-linearly extending the action which fixes (3). In general, this action will
not be p-equivariant. However, one can attempt to produce a ¢-equivariant action from it by considering

0 = hmn%oo Son O Onaive,B © So_n~
Typically (i.e. for an arbitrary Breuil-Kisin module) this limit will not converge. However, in our case
this limit really exists, due to the special shape of 9 (and ultimately the fact that the Hodge-Tate
weights of r are sufficiently small). Furthermore, one shows that this is the unique G g-action satisfying
the above divisibility. Therefore, the G-action computed by this limit coincides with the G k-action
coming from 7.

Concretely, if & = 8D is a basis of 7V then the G x-action on 7

is given by
o(a) = a (limy—o ¢"(a(D)D™Y)) .

This allows us to reformulate the implication in the final part of Step (1); we obtain that o € W (T)
implies
c € WIS (x1, xa),

where now WSK “AS(yy xo) C HY(Gk,F,(x1/X2)) is a subspace of certain “Gx-Artin-Schreier” coycles.

Step 3. The final step is to produce a dictionary between the restriction of these“G x-Artin—Schreier”
cocycles to G, and Kummer cocycles. This was done in a beautiful computation of Abrashkin [Abr97].
To be precise he considers any h € vl[[v]] and chooses b’ € C” so that ¢(h’) — k' = h. Then he considers
the “Gp-Artin—Schreier” cocycle G — F,, defined by

o limy, oo ™ (o (B) = 1)

Equivalently, this cocycle can be described as sending o € G, onto the image of o (k') — b’ under the
map Ocs» — F,,. The restriction to Gy, of those cocycles in WS'% “A5(y, x2) all have this form. Abrashkin
gives an explicit formula, using the map ¥ from above, which expresses this cocycle as a Kummer cocycle
(see Proposition . Using this formula we obtain a Kummer theoretic description the restriction of
WEx=A5(x1, x2) to G in terms of an explicit ¥, (x1,x2). We deduce, for 7 ~ (%' |, ), that o € W (7)
implies

cla, € ¥olx1,X2)-

It only remains to prove the opposite implication: if ¢|q, € ¥4 (x1, x2) then we must produce a crystalline
lift of 7 witnessing o € W (7). We do this in the standard way by producing crystalline lifts of the
characters x1 and x2 and then considering the image in H*(Gx,F,(x1/x2)) of the space of crystalline
extensions of these two lifts. By the above this image is contained in ¥, (1, x2) and we will be done if
these two subspaces are equal. This follows by comparing dimensions.
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2. SERRE WEIGHTS

Throughout K/Q, is a finite extension with residue field k. Set f = [k : F,] and e = ¢(K/Q))
the ramification degree. Choose a uniformiser 7 € K and a (p/ — 1)-th root 7!/ (' =1 in a completed

algebraic closure C of K. Set L equal the unramified extension of K (7r1/ p'ffl) of degree pf — 1. Write 1
for the residue field of L.

Definition 2.1. A Serre weight (for GLa(k)) is an isomorphism class of irreducible F,-representations
of GLy(k). Any such class can be represented by

Oap = ® (deth Rk Symar—bT kz) ®k77 Fp
T€Homg, (k,Fp)

for uniquely determined integers a., b, satisfying b,,a, — b, € [0,p — 1] and not all b, equal to p — 1.

Suppose V is a Hodge—Tate representation of G on a @p—vector space. For each x € Homg, (K, @p),
the k-Hodge-Tate weights HT, (V) of V is the multiset of integers which contains ¢ with multiplicity

dimg (V @,k C(—i))9x.

Here C(i) is a completed algebraic closure of K with the twisted Gk-action o(a) = Xcyc(0)'o(a) for xeye
the p-adic cyclotomic character. Thus, HT,;(xcyc) = {1} for every .

Definition 2.2. A lift of a Serre weight o = 0,3 is a tuple of pairs of integers ¢ = (a,, b“>neH0mQ (K3,)
P Ip

such that, for each 7: k — E,, there is an indexing

(2.3) {rk € Hom(@p(lﬂ@p) |klk =7} ={10,..+,Te-1}

so that
(an7gﬁ) = (aT+17bT) ?fﬂ:TO, .
(1,0) if Kk =1; for i > 0.
We say that a crystalline representation of G on a finite free Z,-module V has Hodge type o if there

exists a lift & = (@, b,,) so that

HT. (V) = (ax, bx)
for every k : K — @p.

Definition 2.4. For a continuous 7 : G — GL2(F,), we let W< (7) denote the set of Serre weights o,
for which there exists a crystalline representation of G on a finite free Z,-module V' with Hodge type
Oap and V @z Fp =T.

The following motivates the definition of W (7). Suppose that F' is a totally real extension of Q. Let
p: Gr — GLy(F) be a continuous and absolutely irreducible representation which arises as the reduction
modulo p of a p-adic representation associated to a Hilbert modular eigenform of parallel weight 2. For
each place v of F' dividing p, let k, denote the residue field of F,,. Let D be a quarternion algebra with
centre F' and which is split at all places dividing p, and at zero or one infinite place. In |[GK14} 4.3.3]
it is explained what it means for p to be modular for D of weight 0 = ®,,0, (each o, being a Serre
weight for GLa(ky)).

Theorem 2.5. Suppose that p > 2. Assume also that p is modular, compatible with D in the sense of
|GK14), 4.3.4], and that ﬁ|Gp(<,,> is 1rreducible. If p = 5 assume that the projective image of E|GF(CP) 18
not isomorphic to As. Then p is modular for D of weight o = ®,,,0, if and only if o, € W (plg,, ) for
each v | p.

Proof. See |GLS15, §4.1 and §4.2]. O

3. EXPLICIT SERRE WEIGHTS IN THE SEMISIMPLE CASE

In this section we recall explicit descriptions of W (7) when T is semisimple. Recall our fixed choice
of uniformiser 7 € K as well as the (p/ — 1)-th root rl/ -1, Using this we can define a character

w:Gg — k*
5



by setting w(o) equal the image of o(7l/®’=1))/71/(?' =1 in k> Note that w depends upon 7'/®’—1),
but its restriction to the inertia subgroup Ix does not. For 7 : k — F,, set w, := 7 ow. Then, for every

X|IK = Hw:}‘r
T

for some integers n,. The n, are uniquely determined if we further ask that n, € [1,p] and not every n,

—x )
character x : Gk — F,, , one can write

. . . Qrin =
equals p. Notice also that, since w? = w;o,, we can write |7, = w; " for any 7 : k — F,,, where

f-1
(3.1) Q= szn,row.
i=0

Definition 3.2. Let 7 : Gx — GL2(F,) be continuous and semisimple. Following |GLS15| 4.1] we define
a set of Serre weights WP (7) as follows:

o If 7 is a direct sum of two characters, then o, € WP(7) if there exists
J C Homg, (k,F), z; € [0,e — 1] for each 7 € Homg, (k,F,)
so that

?|I ~ (HTE]W?T+1+IT HT%J ng_‘—IT 0 )
K — .

0 [Lgywr " Il ey whrtea
o If 7 is irreducible, then o, € WP(7F) if and only if there exists
J C Homp, (ko, ), x,; €10,e — 1] for each 7 € HomFP(k,Fp)
so that

a,.+1+x,.‘k ererT\k
= ~ HTEJwT HTQJ Wr 0
T|IK =

a,-—&-l—&-e—1+ac7.|)C b7-+e—1—;c.,.‘k
0 HTQJ wr [Ieswr

and so that Homg, (k2,F,) is the disjoint union of J and {7 oo | 7 € J}, where o denotes the
non-trivial element of Gal(ks/k); here ky denotes the unique degree 2 extension of k.

Theorem 3.3 (Gee-Liu-Savitt, Wang). If T is semisimple, then WP (7) = W (7).

Proof. When p > 2 this is [GLS15}, 5.1.5] except with =, from loc. cit. replaced with e—1—x, for 7 & J
(this renormalisation is for convenience later on). When p = 2 the methods of Gee-Liu-Savitt have been
adapted by Wang (see [Wanl7, Theorem 5.4]). O

When 7 is reducible but not semisimple |GLS15] shows that W< (7) C WP (7). However, this
inclusion is rarely an equality. Our goal is to give a an explicit condition on the extension class of 7
which determines whether o, € WP (7%) is contained in W (7).

4. THE ARTIN-HASSE EXPONENTIAL

In this section we use the Artin—Hasse exponential to construct certain subspaces of H1(Gy,,F,) from
power series in /[[v]] ®F, F,. Later (in Section we will use these subspaces to define versions of WP (7)
for non-semisimple 7. In order to apply results from [Vos79] and [Abr97] we assume that p > 2 in this
section.

Construction 4.1. Recall that [ denotes the residue field of L. Then [Vos79, Proposition 1] produces
an isomorphism of Z,-modules

EA oW (D)[[o] = 1+ oW (][],
given by

T — exp Z(%)"(x)
n>0
Here exp(z) = 3,5, f—, and ¢ denotes the Z,-linear operator on W (I)[[v]], which acts as the Witt vector
Frobenius on W(l) and which sends v — vP. Applying ®z F, produces an isomorphism vl[[v]] =
(1 4+ oW (I)[[v]]) ®z, F,. We can extend M o a surjective homomorphism

M) - WO ()< @2 F,

6



by choosing any surjective group homomorphism 1 : | — Z/pZ and setting EAH(m) =¥ for z € 1.

Composing EAH with evaluation at v = 7/ =1 produces a homomorphism
(4.2) o U[[v]] = L @z F, = H(Gp, pp(L))

Here 1,,(L) denotes the group of p-th roots of unity in L and the identification on the right is given by
the Kummer map (notice that by construction L contains a primitive p-th root of unity).

. o . . A .
Remark 4.3. The reason for making the somewhat artificial extension of F T from vl[[v]] to {[[v]] is that
it allows us to give a uniform statement of our main theorem. In all but one case we will only need to

view B (or ¥y) as a function on vl[[v]]. To incorporate the one degenerate case however, it is necessary
to have a map surjecting onto H'(Gp, u1,(L)); for this reason we ask that the constant terms in I[[v]]
be mapped onto powers of v. See Lemma [6.1] and Corollary [6.2] for more precise results regarding this
degenerate case.

The motivation for considering ¥y comes a result of Abrashkin [Abr97], which we will explain now.

Definition 4.4. To state Abrashkin’s result we write O¢ for the ring of integers in the completed
algebraic closure C' of K, and O := T&lexp Oc¢/p for its tilt. Recall that O multiplicatively

identifies with %ianpr O¢. Fix a choice of compatible system /@ =0p% ¢ o of p-th power roots of

71/ 1) o that
(Wl/(pffl)’ ﬂl/p(pffl), Wl/pr"(pffl)’ ) EOp

Then v — (71_1/(pf—1)’ ﬂ_l/p(pf—l)77r1/p2(pf—1)7 ...) defines an embedding
[[v]] = Ocn

via which we view O as an [[[v]]-algebra. Set u := vP’ =1, Thus, we also get an embedding E[[u]] = Ocs.
The ring Op» is u-adically complete and C” := O [L] = Frac O is algebraically closed.

Note that Gk-acts naturally on O via its action on O¢. Under this action the subrings {[[v]] and
E[[v]] are not Gy-stable. However, they are stable under the action of G for Ko = K(7'/P7).
Furthermore, this action factors through the surjection Gx_ — Gal(L/K) (which exists because L N
K = K since L/K is tamely ramified while K, /K is totally wildly ramified) and is concretely given
by

(4.5) g->_ f' = g(fi)w(g)'’

i>0 i>0
for the character w defined in Section Bl

Theorem 4.6 (Abrashkin). Fiz a generator €1 € p,(L) and choose z(v) € W (1)[[v]] with z(ﬂl/(pf_l)) =
€1. Suppose that h € u=?/P=Uyl[[v]]. Then there exists a homomorphism cy, : Gr, — F,, such that:

o If H € C° satisfies H? — H = h then g(H) — H = ¢;,(g) modulo wmes for every g € Gp.

e The image of h(z(v)P — 1) € vl[[v]] under ¥q from (4.2)) is given by g — eih(g) forall g € Gy

In the second bullet point we write z(v) for its image in l[[v]] and use that z(v) —1 € u® @~ DI[[v]] (which
follows from the fact that €1 — 1 has p-adic valuation 1/(p —1)).

Proof. This is the main lemma in |[Abr97, Section 2.3] specialised to the case M = 1. For the benefit of
the reader let us reiterate why there exists a function ¢, : G, — Fp, so that

g(H) — H = ¢,(g) modulo mgs.

We claim that it is enough to check that g(h) — h € mes. Indeed, if this is the case then any solution to
XP — X = g(h) — h can be written as X + X7 with Xy € F, and X; € mes. If we take X = g(H) — H
then we can set ¢, (g) = Xo.

To check that g(h) — h € mes notice that, since h € u=°?/P=Uyl[[v]], it is enough to check that
g(v") —v' € viuP/ PO, for any i € Z. To see this write g(v') — v = v*(¢* — 1) for some element
¢=(1,(1,(2,...) € Ocv. Then recall the well-known fact that ¢ — 1 generates the ideal u?/ PO,
(see, for example, [Fon94, 5.1.3]). O
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As a first application of this result we produce a refinement of (4.2) by defining
U~/ P [o]) @p, F, - H (G, Fy)

as the E,—linear extension of the composite

1)

w e e gu)] 2D 1)) 2o HY G, (L)) — HY(G, Fy),

where z(v) is as in Theorem and the last map is the identification induced by the choice of €;. In
other words, the last map sends f : G — p,(L) onto the homomorphism ¢ : G, — F), characterised by

flg) = E;(g). B
In the following corollary we write ¢ for the F,-linear extension of the p-th power map on Ogp.

Corollary 4.7.
1) If H € C* @ T, satisfies o(H) — H = h for h € u=*?/®=y[[[v]] @p_ F,, then
p =P p P
g(H) — H = ¥(h)(g) modulo m¢, ®p, Fy

forall g € Gp.
(2) The map ¥ is Gal(L/K)-equivariant when restricted to u=?/P=Dyl[[v]].

(3) If H € I((v)) ®r, F, is such that o(H) — H € u=?/®=Vyl[[v]] @r, Fp,, then U(p(H) — H) = 0.

Proof. Part (1) follows immediately from Theorem [£.6] For part (2) choose go € Gal(L/K) and write go
also for a lift to Gx_. If h € vl[[v]] ®F, F, and H € C* @&, F, satisfies p(H) — H then, by part (1),

U (g0(h))(9) = 9(g90(H)) — go(H) modulo mc»

= 90 (90 '990(H) — H)

= go¥(h)(go ' 990) modulo ms,
Since the action of Gal(L/K) on H'(Gp,F,) is given by

(90 - €)(9) = goc(go " 990),
part (2) follows. For part (3) we note that p(H) — H € u=?/®=Uyl[[v]] ®p, F, implies
H € u=?/®"=Dyi[[v] @, F,.

Therefore, the calculation made in the proof of Theorem shows that g(H) — H € mg» ®p, F, for all
g € Gy. O

5. EXPLICIT SERRE WEIGHTS VIA KUMMER THEORY

In this section we define a version of WP (7) for reducible but not necessarily semisimple 7. In order
to apply results from the previous section we assume p > 2.

Notation 5.1. We frequently use the observation that k ®r, F, =[], ., F, IFp, the identification being
given by a ® b — (7(a)b),. Therefore k[[v]] @r, F, = HT;,CHE’ F,[[v]]. Via this identification we can
express an element of y € k[[v]] ®@r, F,, as a tuple (y;), with y, € F,[[v]].

Definition 5.2. Fix a Serre weight ¢ and two characters x1, x2 : Gx — F;. Then we define
\IIU(Xla X2) = Z \IIU,J,w C Hl(GLa?p)
J,x
where:

e The sum runs over pairs J C Homg, (k,F,) and © = (xT)T:kHFP with z, € [0,e — 1] for which

wloy = TTeervor Tt ol = [Lagres TLubrremios
reJ TgJ T¢J TeJ
o U, ;. is the image of
(,UQT,U,J,E—(pf_l)xT)Tl[[uH ®r, Fp
under ¥ : u=?/ P~ V[[u]] @, F, = H*(Gp,F,) for

f-1 )
QT,U,J,x = sz ((aTocpi - b-roLpi + 1)(_1)TO¢16J + (6 —-1- 2x70¢i)) 5
=0
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where

(_1)7’6-7 = 1 lf T g J?
-1 ifreld.

For this to make sense we need (v®ree =@ =Da) 117]] ®r, F, C u=?/®=D[[u]] ®F, F,. This
can be seen by observing that Q. , ;. is minimal when J = HomFP(k,Fp) and each =, = e — 1,
in which case Q, 5 7. > —(e+p—1)(pf —1)/(p—1). Notice also that ¥, (x1, x2) is empty unless
o € W (x1 @ Xa)-

Remark 5.3. To motivate the appearance of the value Q. ; j . set

. _ br + - ifregJ b ar+e—x, ifregJ
" Nar+ 14z, ifred’ T )br+e—1—z, ifTed

and notice that Q; 5y, = Q- _s for Q. ,_, defined as in (3.1). Therefore, for g € Gal(L/K), we have

(54) g0 hre) = (e (g)) = () (0000

where wy s, := [[, wi 7%, Examining the first bullet point of Definition shows that ¥, (x1,x2)
being non-empty implies
X2/ X1l1x = Wo gz

Definition 5.5. Suppose 7 ~ (%1 XCQ) and write x = x1/x2. We define W*P(F) by asserting that
Oap € WP (F) if and only if

(1) o € WP(7) and

(2) under the identification H'(Gg,F,(x)) = Hl(GL,E,)C"‘BLI(L/K):X_1 induced by the inflation-

restriction exact sequence we have ¢ € ¥, (x1, x2).

Our main theorem (whose proof is completed in Section [9) is then as follows.
Theorem 5.6. Forp > 2, we have WP (T) = W (7).

Notice that the definition of ¥, (1, x2) is insensitive to twisting the characters x; and xo by unramified
characters. The next lemma shows that, in fact, U, (x1, x2) accounts for all such unramified twistings
simultaneously.

Lemma 5.7. We have

To(x1,X2) = @ To (X1, x2) S HI=0x2 01
P

with the direct sum running over all unramified characters ¥ : G — F;.

Since Gal(L/K) has order prime to p, this lemma follows from the observation that ¥, (x1,x2) =
U, (x1, x2) E/E)=x2/x1 for I(L/K) C Gal(L/K) the inertia subgroup. In almost all cases this follows
from the equivariance of ¥ from Corollary [£.7] In one degenerate case this argument does not work.
Since we explain this issue in more detail in Section [6] we give a complete proof of Lemma [5.7] in that
section.

6. REFINED DESCRIPTIONS OF ¥, (x1,X2)

In this section we give more concrete descriptions of ¥, (1, x2) by producing smaller subspaces of
w=?/=D[[v]] @, F, whose image under ¥ computes ¥, (x1,x2) ¢ E/K)I=x"",
calculations will give upper bounds on the dimension of ¥, (x1, Xx2).

We begin by dealing with the most degenerate situation.

In particular, these

Lemma 6.1. Suppose 0 = 04 with a; —b; =p —1 for every 7. If J = Hommp(k,Fp) and v, =e—1
for each T, then

\ch;al(L/K>=><’1 = HI(GIOFP(X))

o,J,x

if X is an unramified twist of the cyclotomic character Xcyc.
9



Proof. The assumptions on o,J and z imply Q, , 7. — (p/ — 1)z, = —ep(p/ — 1)/(p — 1). Therefore,
VU, ;. equals the F,-linear extension of the image of [[u]] under the surjection ¥y : [[[v]] = L* @7 F, =
HI(GL,up(L)). If K, is the unramified extension of K of degree p/ — 1, then it follows that Vs g
equals the F,-linear extension of the image of K @7 F, = H'(Gk.,,, tip(L)) under the restriction map.
Thus, \Ilc(:’f}lﬁ(IL/K):)(1 = HY(Gg,Fp(x)) if x is an unramified twist of the cyclotomic character (and is
zero otherwise). O

Corollary 6.2. Suppose T = ¢ ® (*§° 1) for an unramified character 1. Then o = o409 € WP(T) if
ar =p—1 for every T.

Proof. The previous lemma implies that Xc_ylcl Ix = Wo,J,¢ for J = Homp, (, F,) and 2, = e — 1 for every
7. From this we deduce that o € WP (7). The previous lemma also shows that W, (x1,X2) contains
HY (G, Fp(thXeye)) and so ¢ € o (x1, X2)- 0

For the rest of the section we assume we are not in the case just mentioned, i.e. we assume that if
J = Homp, (k,F,) then x, # e — 1 for at least one 7. The essential reason for distinguishing between
these two cases is because, as mentioned in Definition the inequality
pl -1
p—1

QT,U,J,:L’ Z —(6 +p - 1)

is strict except when J = Homp(k,F,) and x, = e — 1 for every 7. We will see in the following proofs
(see also the proof of Theorem [8.1]) that the strictness of this inequality plays a crucial role in certain
arguments.

Proof of Lemma[5.7. We've seen it suffices to show that ¥, (x1,x2) = Vo (x1,x2)! F/F)I=x2/X1 for the
inertia subgroup I(L/K) C Gal(L/K). By the above we may assume

Qroga>—(e+p—1)p' —1)/(p—1)

so that (UQT"’J*E*(”LD“)TZ[[u]] ®r, F, C u=?/®=Yy|[[v]] @5, F,. By Corollary U is Gal(L/K)-
equivariant when restricted to uw=?/®P~yl[[v]] ®g, F,, it is enough to show that I(L/K) acts on
(vQTv"=Jv1_(pf_1)mT)TZ[[u]] ®F, F,) as wy, s .. This follows from (5.4)). O

Proposition 6.3. Assume that if J = Hompp(k,ﬁp), then x, # e — 1 for at least one 7. Also fix
70 : k — F, and an unramified character ¢ : Gx — ?;.
Define Uy gy C k[[u]] @5, F, as the k ®p, Fy-subspace generated by those y = (y;)- € k[[u]] @p, F), for
which
e y. € Fylu] has non-zero terms concentrated in degrees [0,z if Top~t € J, and
e non-zero terms concentrated in degree [0,x, — 1] if Top™ 1 & J.
e Ify=1and —Q, » 7. € (p/ — 1)Z>0, then y,, may additionally have have a non-zero term in
degree u=%ro.0.0.2/(#7 1)
Then :
(ANt ks i IO WY /4P

for any generator Ay, of (I ®r, Fp)Gal(L/K):w,

Notice that to make sense of A\, we use that [ ® F,, is the regular F,-representation of Gal(l/k). This
implies (I ®p, F,)9*(L/5)=Y i5 one dimensional over F,, for any unramified character ¢. Thus, the Ay
above above exists and is uniquely determined up to scaling.

Proof. Recall that w, s, is the character via which Gal(L/K) acts on (vS'me72) (see the proof of
Lemma . Therefore, any element of \Ilii}l’(f/ K)=vwo.12 can be written as
Y o= (e =0T\ )

for some y € k[[u]] ®r, F,. We have to show that Y = W((v?7=72) X, 2) for some z € (u™*7) Uyjz .
The construction of z will be based upon the following recursion. Define

yo = (v "")ry, Vi = p(Yi—1) (U7 )7 piyp

where i, = go()\w))\il € (k®r, Fp)* and ar = (004,070 — Qro00)/ (07 = 1).
10



By linearity, we can assume that y = e,y where y' € F[[u]], s : k — F, is some embedding, and
ex € k@p, F, =[], F, is the s-th idempotent. Since ¢(e.) = €,0,-1, We can then write y,, = €0y,
with y/, € Fp((u)).

Claim. One of the following must occur:

There exists an n with y, € (u™7); Uz and y; € (u™"7) k[[u]] ®p, F), for all i < n;
Yn € (") k[[u]] ®r, F,, for all n and y, — 0 as n — oo;
Yn € (u=*) k[[u]] @5, F, for all n and y; = Eyo for some € € F,, \ {1}.

Proof of claim. Since y,,_1 = €,5,-n+1Yy, 1 We have

= Opop—ng) p
Yn = €rop—nlU "¢ ynfl(u )/1’1#

where y/,_;(uP) denotes the power series obtained from y/,_; by substituting u with «?. A quick calcu-
lation also shows that
ar = (=17 (ar —b; +1)+ (e — 1 —22,)

for all 7. Now suppose y,—1 € (u™*7)-k[[u]]@r, F, but not in (u=*7),Uy, 5. Then either y], _; € uF,[[u]]
or y,_, € Fpand ko™ & J. In either of these cases one has y,, € (u™"7),k[[u]] ®5, F,. Therefore,
either the first case holds or y,, € (u™""),k[[u]] ®r, F, for all n.

From now on we assume y, & (u=%7);Uj, for any n. Replacing the sequence (y,), by a shift
(Ynti)n With i chosen so that ko ¢~% = 1y for 79 the embedding fixed at the beginning of the section
allows us to assume also that x = 75. Note that this new sequence still has every term contained in

(u™*)rk[[u] @x, Fp.
Let N; denote the u-adic valuation of y;y € F,((u)). Then y;74,; has u-adic valuation
p]N’L +pj710‘7'004,0*1 +pj720¢7_00¢72 +.oo+ POrjop-Gi-1) + Nrpop—i-
In particular, we see that
N; = p'Nis1 + Qg 0,0
If the sequence of integers IV; is strictly increasing then we must have that y, — 0. Therefore we assume
the sequence NNV; is not strictly increasing.

Notice that Nj.1 = pfN; + Q002 < N; if and only if (pf — 1)N; < —Q4y.0,72- In particular,
Niy1 < N implies (pf — 1)N;y1 = (pfif Dp/ N; + (pf — 1)Qr.0.00 < —Qry.0,02 and s0 Niyo < Nip1.
Since we know y,, € (u™*7),k[[u]] ®F, F, for all n we know the N; are bounded from below. Therefore,
the sequence N; must be constant and so —Q, 5,70 = (pf —1)Ny and

f—1(

yr = yo (Lpe(py) - o' Huy)) -

Notice that & := ... L(uy) is p-invariant and so contained in ET . To finish the proof we have to
show £ # 1. For this note that the identity gp()\w)/\;1 = py implies pf(\y) = €)Xy, Therefore € = 1
implies Ay € k ®p, . Since Gal(L/K) acts on Ay, via ¢ it would follow that ) = 1. However, if ¢ =1
then, because — Q. ,7. = (p7 — 1)Ng with Ny > 0, we would have yo € (u=*7), U, contrary to our
previous assumption. This finishes the proof of the claim. O

To finish the proof, recall the observation made before the statement of the claim: that our assumptions
on J and x, ensure that Q. , 7, > (—e+p—1)(p/ —1)/(p — 1) for all 7. Therefore

Qo — (07 =D > —ep(p’ —1)/(p —1)
for all 7 and so
(6.4) Yn € (u™"7)-k[[u]] ®F, Fp = (Vo) Ly, € u” P P Dyk[[v]] ®r, Fp.
Now suppose the sequence (y;); is as in the first bullet point of the claim. Set y(™) = (v%re.72) Ay, Z?:_Ol i
and observe that

n—1 n-1
P(y™) =™ = PV o () D (i) = (07 ) A D
i=0 =0

n—1 n—1
= (v ) Ay, <Z Yir1 — Z yz)
i=0 i=0

= (072 ) Ay (Y — o)-
11



By (6.4) we have o(y™)—y™ € u=r/P=Dy[[[v]] @p, F, and so Corollary shows we can take z = y,,.
If the sequence (y;); is as in the second bullet point, then the y™ converge to () and we have

—(nf =1z e [eS)
(,UQT,U,J,m (p 1) T)T)\’(l)y + (p(y( )) — y( ) — 0

Since (vgfﬁvf@*(pf*l)“)T)\wy € ue?/P=Uyl[[v] @5, F,, the same is true of ¢(y(>)) — y(>). Therefore,
Corollary shows we can take z = 0. Finally, if y; = £yo is as in the third bullet point then, since

geF, \ {1},

() )
Qoge— Doy \ o (Y _ Y
(v )rApy @(5_1) -1
Again, gp(g(_fi) - % € u=P/P=Uy[[v] ®F, F,, so we can again take z = 0. O

Proposition 6.5. For pairs (J,z) and (J',a') with J,J' C Homg, (k,F),) and ., 2 € [0,e — 1], write
(J,x) < (J,2) & Qrogw— Qrogrw €207 —1)Zsq for all 7.
Then
(1) (J,x) < (J',z') implies Uy g C Vg jr pr.

(2) Fiz a Serre weight 0 = 0q4 and T~ (% [,). Then the set of pairs (J,x) for which

—SS _ HTEJ wg7+1+w7 HTQJ ("‘)ZI)'Ter‘r 0
r |IK -

arte—x, brt+e—1—x,
0 HTQJ Wr HTEJ Wr

contains a unique mazximal element (Jmax, Tmax)-

Proof. Define s, = x, for 7 ¢ J and s; = a, — b, + 1 + x, for 7 € J. Similarly, we make sense of s..
Observe that Q; ¢ 7z — Qr . 2 = 2A;, where

f—1
Ar =3 (Lo — Sropi)-
=0

Thus, (J,z) < (J',2’) if and only if A, € (p/ —1)Zx for all 7. We also have A, +(p/ —1)(s.—s;) = pAroy
and so
(66)  Qroe— Qograr — (0 = D =) = Ay phrop + (o7 = 1)(s57 — 2, + 2, — 81).
If Ao, > 0, then is > 0, since 2. — s, € [-p,0] and s, —z, > 0. If Ao, = 0, then A, =
(pf —1)(s; — s.) and so s, > s". Therefore, 7 € J’ implies 7 € J and so

0 if reJ

(s —xr+ 2, —s)=<X0 ifregJJ,

ar—b.+1 ifrgJ el

We conclude again that is > 0. Since (J,x) < (J',2'), it follows that in every case
(o8t @T D) f[ul] @, By © (o5 =070 ][] @, By

This shows \I/J“]’x C \IIO—)J/’I/.
Part (2) has already been proved in |GLS15, 5.3.3], but in a different setting. To translate their
statement into ours, suppose (J, x) is such that

ar+1+x, br+x,
Fss|] ~ (Hq—er‘r HTQJ Wr 0 )
K — ar+e—x, br+e—1—x,
0 HTQJ Wr HTEJWT

(if no such (J, z) exists then there is nothing to prove). Let s, be defined as in the first sentence of the
proof. To accommodate the notation in loc. cit. fix an embedding 7o and set s; = s,,,:. Notice that
5; € [0,e = 1)U [y, + e — 1] for vy := @, 04 — bryopi + 1, and so we can apply |[GLS15, 5.3.3] with
N = M(so,...,5¢-1;1). Combining [GLS15} 3.1.1, 3.1.2 and 5.1.2] shows that [GLS15, 5.3.3] applied in

this way produces s, ... ,s}r-‘inl so that, for any j € [0, f — 1],
-1

(6.7) Zpl(s‘;jr]? —si14) € (pf —1)Zs0
i=0

(here the indices of s; and s™® are viewed modulo f). It folk)ws from the proposition that st €
[0,e — 1] U [rs,7; + e — 1] for each i. Define Jyax C Homg, (k,F,) by asserting that 79 0 ¢ € Jmax if

12



min
%

min

and only if s™™ ¢ [0,e — 1], and define Tiax,roopi 1= Spt if g 0 0" & Jmax and Timax,roopi 1= 8
otherwise. Then ([6.7)) implies that

QT,J,J,z - QT,U,Jmax,mmax S (pf - I)ZZO
for all 7. In other words (J, ) < (Jmax; Tmax)- Since the s™ are independent of the chosen pair (J, )

it follows that (Jmax, Tmax) is the desired maximal pair. O

-7

Remark 6.8. The proof of [GLS15, 5.3.3] (or more precisely, the equivalent statement of |[GLS15, 5.3.1])
gives an algorithm to compute the s and therefore the maximal pair (Jmax, Tmax), explicitly.

As a consequence of the previous two propositions we immediately deduce the following corollary.

Corollary 6.9. If (Jmax; Tmax) S the mazimal pair from part (2) of Proposition and x = x1/X2,
then

Vo (X15X2) = Yo, Joar max
and

; -1
s Gal(L/K)=X71 Tmax,T + 1 ZfT oY S Jmax
dlmFP \IJU(thz) =t Z {xma ZfT o] 9071 ¢ Jm'l
T X,T ax

= v+ Card(Jmax) + ) Tmax,r+

where v = 0 unless x = 1 and —Q; ; € (p! — 1)Zsq for one (equivalently all) T, in which case

max;Tmax
v=1.

7. BREUIL-KISIN MODULES

We do not assume that p > 2 in this section. Let F be a finite extension of F,, sufficiently large that
there is an embedding k£ — F. A Breuil-Kisin module 9t over [ is a finite free & := k[[u]] ®F, F-module
equipped with a homomorphism

p: gﬁ®gwp Gp — M
with cokernel killed by a power of E(u) € GFH Here ¢ on G denotes F-linear extension of the the p-th
power map on k[[u]] and E(u) denotes the (reduction modulo p of the) minimal polynomial over W (k)
of . Thus E(u) = u®.

Proposition 7.1. Ifr is a crystalline representation over O with Hodge—Tate weights > 0 and r®oF = 7,
then there exists a Breuil-Kisin module M over F and a continuous @-equivariant C”-semilinear G-
action on M D)) C* such that

(D1) o(x) —x € M D uletP=1/=D0 ., for all 0 € Gk and x € M,

(D2) o(z) =z foro € Gk, and x € M,
and such that ¢, G g -equivariantly

im@;c[[u]] CP =7V ®F, Cb7

where the Frobenius on the left hand side is that firing ¥ (so we can identify T = (9N @) Ch)e=1).

Proof. This follows by applying [Bar20] 2.1.12] to the crystalline representation rV (note that Hodge—
Tate weights in [Bar20] are normalised to be the negative of those here so rV has Hodge-Tate weights
> 0 in the sense of loc. cit.) and base-changing along O — F. Here we also use the observation that
the image of the element y := [¢] — 1 in loc. cit. modulo p generates the ideal u®”/ =D, (cf. [Fon94l
5.1.3]), and so [1°]p~! (1) modulo p generates the ideal u!+?/P=D O, = yletr=D/FP=DO,,. O

The following is (a minor alteration of) the key technical result in |[GLS15|.
Proposition 7.2. Suppose that r has Hodge type 0,0 and that r o IF is reducible. Let 9t be the mod p

Breuil-Kisin module associated to v as in Proposition[7.1, Then there exist integers 0 < s.,t, < p with
(7.3) Sy +tr=ar+e, max{s;,t;} > a; +1

and an Gg-basis f of M so that
_ g (=) (yr)
o =5("G )

o (u®r)

1One can define Breuil-Kisin modules over more general Zp-algebras but in this paper we only need to consider p-torsion
Breuil-Kisin modules over F.
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for some x1, 22 € (k @r, F)* and y. € u* Fpy[[u]], where

5. — ar+1 ift, <ar+1;
"o iftr > ar + 1.

Proof. As we will explain this follows from |GLS15| 5.1.5]. Notice however that in loc. cit. it is assumed
that p > 2. This requirement has been removed by the work of [Wan17] where it is shown that |[GLS15|
5.1.5] remains true, provided the uniformiser = € K is chosen as in [Wanl7, 2.1].

It follows from [GLS15, 5.1.5] there are s.,t, satisfying and a basis 8 of 9 satisfying ¢(8) =

B8 (rl(“tr) (¥ ) for some 1,20 € (k ®p, F)* and polynomials 3, & F,[u] as claimed, except that

0 z2(u’T)
possibly y. has a non-zero term of degree ¢, if t; < a; + 1. A straightforward change of basis argument
allows us to remove these u'™ terms at the cost of introducing terms of degree > §,. This gives the
formulation here. U

We conclude this section by explaining how one can describe the restriction of 7¥ = (r ®o F)Y to
Gk, in terms of the matrices from Proposition We do this by setting

_(di dd: b
(7.4) D= <0 d ) € Mat(C” ®F, F)
with entries defined by the equations
d _
dy = @(dy)zq (u'), dy = p(da)w2(u’"), p(d) —d = 37 : T Yr).
122
Then D — (wl(gt*) m((yJS)T)) @(D) and so, if a = D in M Q) C® then (o) = . Therefore, a is an

F-basis of 7 = (I @] C*)#=! and (D2) from Proposition implies

o(dy) o(d1) o(d2)
_ T g(d)TE —dE
(7.5) 7(0) = aDo(D) = o ( i " )
2

for 0 € Gk, . The elements d; and dz can be easily be described and this allows us to compute the
characters appearing on the diagonal of . First note that, by an easy calculation, we can write
di = T1(v™%) for ; € (I ®p, F)* satisfying 71 = ¢(Z1)z1 and Q,, = Z{:_ol pitﬂwi as in .
Similarly to the calculation in , we find

U((UQT’t)T)(viﬂT’t)T = (WT(O')QT’t)T = HWT(U)tT

for o € Gk, . On the other hand, 7; € (I ®r, F)* and so G acts on Z; by multiplication with an
unramified character ;. Therefore,

o(dy)dyt =1 (0) HwT(U)_t*.

Similarly with d; replaced by dy and ¢, with s,. We conclude that

_ ~ 7,/}1 HT w;t" c
(76) r\/lGKoo = ( 0 w2 HT w‘rST)

for some cocycle ¢’. From this one easily deduces the following corollary; note that this is exactly the
argument used to prove Theorem in |[GLS15].

Corollary 7.7. If 040 € W (F) with T reducible, then o,0 € WP (7).

Proof. Choose a finite extension E/Q, with integers O so that a crystalline Z,-representation r witnessing
04,0 € W(F) is defined over O. Take F equal the residue field of O. Enlarging F if necessary we can
assume that there is an embedding & < F so the above results apply. In particular, applying Theorem[7.1]
to r produces a Breuil-Kisin module 9 with shape as in Proposition |7.2

From (7.6) it follows that 7|q,_ = (W HOT e " HC i ) for some cocycle c and s, t, satisfying (7.3).

Since restriction induces an equivalence between semi-simple representations of Gx and semi-simple
representations of G __ (see, for example, [Bar21), 2.2.1]), it follows that

art+l4z, Tr
FSS|I ~ (Hq— wiT O+ ) _ (HTEJWT HTQJ wr 0 ) >
K — ar+e—sr - arte—x, e—1l—xr ?
0 Il w? 0 [[ g w? [I,eyws
14



where J = {r € Homg, (k,F,) | t; < a, + 1} and

S sy —a,—1 ifrteJ;
T ] s, if 7 J.

Notice that 7 € J implies a; + e > s; > ar + 1 and so z, € [0,e — 1] and likewise if 7 ¢ J. It follows
that 0,0 € WP(T)%, as required. O

8. CONSTRUCTING (GALOIS ACTIONS

The goal here is to show that the G __-action on 7V described in (7.5) can be extended to a description
of the whole G g-action. We point out that Theorem [8.1] does not require the assumption that p > 2.

Theorem 8.1. Assume M is a Breuil-Kisin module over F with shape as in Proposition [7.3. Assume
additionally that

(STvtT) 7é (6 +p— 17 0)
for at least one T. Then there exists a unique continuous p-equivariant C°-semilinear action of Gx on
M Dg[[u]] C” satisfying:
(D1) o(z) — 2 € M Ry w'*TP~V/P=VO, for all o € Gk and x € M;
(D2) o(z) =z for o € Gk, and x € M.

Furthermore, if B is a basis of M with o(B) = BC, then this Gk -action can be described concretely by
o(8) = CopB for

Co = limy o0 (Co(C) ... ™" (C)"(a(CTH)) ... p(a(C71))a(CT)) € Mat(C” @5, F).

We point out that uniqueness of this G k-action can also be deduced from |GLS15| 6.1.3] (though in
loc. cit. the language of o, G-modules is used).

Proof. As we will explain below, in most cases the theorem follows from an application of [Bar22| 11.3].
Unfortunately, these results do not apply in the special case where (s,,t;) = (0,p+ e — 1) for every 7.
We treat this special case directly at the end of the proof. (Note that this special case is not excluded
by the assumption in the statement since the condition on (s, t,) is ordered in the opposite way.)

For now assume (Sr,t,) # (0,p + e — 1) for some 7. Since we also have (s;,t;) # (p +e — 1,0) for
some 7, there are integers 0 < ¢, < e+ p — 1 not all equal to e + p — 1 such that

o (ud™)9M C M¥ C M for M¥ the image of the linearised Frobenius on M.

Indeed, if (3 is a basis of M with p(8) = BC, then (ud7)M is generated by ¢(B)(u?")C~1, and so the
assertion is equivalent to asking that (u97)C~! € Mat(k[[u]] @, F). Following [Bar22, 11.1], the choice of
8 also allows us to define a “naive” C°-semilinear G k-action Tnaive,s O M D[] C” by C’-semilinearly
extending the Gx-action which is trivial on ¢(8). Typically, oyaive 3 Will not be @-equivariant. However,
[Bar22| 11.3] (and its proof) describes conditions on 9t which ensure ¢™ o opaive,3 © ¢~ " converges to a
¢-equivariant C”-semilinear G g-action on 9 @py] C" satisfying (D1) and (D2). To explain this notice
that if 901 satisfies the previous bullet point and

® Onaive,g() —z €M Qk[[u]] u(6+p_1)/(”_1)(90b for every x € 9 and o € Gk,

then (9, B) defines an object in the category denoted ZQVU’T (F) in [Bar22, 11.2]. The assertion of |Bar22,
11.3] implies that there exists a unique G'x-action o on M @y Oc» making (MM, o) into an object of
ngh(]F). Considering the definition of Y;~"(F) from [Bar22, 10.2] we see this is equivalent to asking
that o satisfies (D1) and (D2). Finally, examining the proof of [Bar22| 11.3] shows that this action o is
obtained as the limit of ¢™ o Tpaive,g © ™" as claimed.

To see the formula for C,, in the theorem note that, by definition, oyaive 5(3) = SCa(C) 1. Therefore,

@n O Onaive,B © So_n(ﬁ) = Son O Onaive,f (/690_1(0_1)@_2(0_1) cee W_n(o_l))
=¢" (BCa(C™ ) Ho(C™ ) 2 (a(CTh) ..o (a(CT1))
=B (Cp(C)...o"HO)W (C)p"(a(CT1))e"Ha(CTH)) ... p(a(CTH))a(CTH)).

We’ve already seen the first bullet point holds. To apply these results we need to check the second does
also.
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Concretely, since opaive 5(3) = BCa(C~1), the second bullet point is asserting that Co(C~1) — 1 €
w(etP=1/ (=1 Mat(O g ®r, F). To check this we take 3 a basis as in Proposition so that

Colc-1) -1 <m<ém xg(f’gi)) <x1_1(0(()u)tT) —xfzzx iﬂ(f’;();(“l;”) .

() -1) st (3ot (25)")
0 (=) 1)

For the required divisibility we use that ﬁ — 1 cu® PO, (see the argument given in the proof of

Theorem . This clearly implies the required divisibility for the diagonal entries. For the upper right

entry, note that
yr — o(y) (UE‘U)) — 4, — o(y,) +oly) (1 - (gé‘u))>

is divisible by u%teP/(P=1) hecause y, is divisible by (u’"), (here &, is the integer defined in .
Therefore we just need that §, — s, +ep/(p—1) > (e+p—1)/(p — 1). This inequality follows from the
observation that (e4+p—1)/(p—1) —ep/(p—1) = —e+ 1 and

5 ar+1—s, ift, <a,+1,in whichcasea, +1—s, =t —e+1> —c+1;
5 =
T T -5, if t; > a,; + 1, in which case —s, =t —a, —e > —e+ 1.

This proves the theorem under the assumption that (s,,t;) # (0,e + p — 1) for at least one 7.
We conclude by addressing the case where (s.,t,;) = (0,e+p—1) for every 7. This case is particularly
simple because we can choose a basis 5 of M so that p(8) = SC with C = (11“?%1 Ioz). Indeed, a

etp—1
0

1 =2\ [(zu™ oy (1 p@)\ (2wt y—zas + p(z)zustPL
0 1 0 T2 0 1 - 0 Ta

for any = € k[[u]] @, F. If yo = yz; " and yi122 = @(yi)z1usTPL, then z = 3,0, y; converges in
k[[u]] ®p, F and satisfies y — 222 + ¢(x)z1utP~1. Therefore, we can assume C' is diagonal.

Next we show that 9 @[y C” can admit at most one G g-action as in the theorem. Using condition
(D2) and the calculations from the proof of Proposition we deduce that 7¥ = (M @y, C°)¥~! is

generated by a = 8D for D = (5“642 £2> with Q = (p+e—1)(1+... +p/71) and 7; = p(7;)2;.

Furthermore, for 0 € Gk__, we have o(a) = « (1&1(0)11 WTO(U)7(5+1)71) w;zg» with ¢; defined by o(z;) =

Zii(o). Tt follows that the Gi-action on o must be of the form o(a) = « (%(U) I WTO(”)i(Hpil) 1;2(‘8))

for ¢: Gx — T a cocycle vanishing on Gg__. (In fact, such non-zero cocycles occur only in very specific
situations by |[GLS15} 5.4.2].) But then

= (" D) (MO e (@ et o)

€2

5 (("i”’)g [, wr (o)~ ¢+ aa(%z)l”%) |
0 1

priori, we have C' = (“51“ myz ) Via a change of basis, we can replace C by

Clearly, this Gx-action only satisfies condition (D1) if ¢ = 0, which proves uniqueness. To finish the
proof we just have to show that the limit formula in the theorem converges to a Gk-action as claimed —
this Gi-action will then coincide with that given in the previous formula when ¢ = 0. But this is clear

because
L \etP= DA+ 4p")
Cp(C) ... " (C)e"((C7)) (o (C o€ — 1= ((mﬁ 0 B 8)

converges and the limit is an element of u(¢+P=1/(P=1) Mat(O¢» @, F) as n — oo, since (#u)) -1le€
uletr=D/=D 0, O
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Corollary 8.2. Suppose p > 2 and 040 € W(F) for7= (% (). Ifa; =p—1 for each 7, then assume

X = X1/Xx2 is not an unramified twist of the cyclotomic character. Then o9 € WP (T).

Proof. As in Corollary choose a finite extension E/Q,, with integers O and residue field F, so that a
crystalline Z,-representation r witnessing o,,0 € W(7) is defined over O. After possibly enlarging E we
can apply Theorem [7.1] to r to produce a Breuil-Kisin module 9 with shape as in Proposition [7.2]

We want to apply Theorem to M. Let s,,t,,yr,d, and x; be as in Proposition We need to
show that

(S‘f'?tT) 7é (6 +p— 1a O)

for at least one 7. If not, then the identity s, + ¢t = a, + e would imply a, = p — 1 for every 7.
From it would also follow that x|, = [[, w1, However, xeye|r, = [, w1, so x would be
an unramified twist of the cyclotomic character. Since we’ve assumed this isn’t the case we can apply
Theoremto produce a G'k-action on IM Q)] C”. By uniqueness, this G x-action coincides with that
induced from the G g-action on 7.

In the discussion after the proof of Propositionwe described a basis « = 3D of 7V = (I ®k[[u]] CPye=1
with D = (%1 djj) for dy = 71 (v ), do = To(v™=), and

da

= _ —ST
QD(d) d dlx2 (u y’f')'f"

Since x5 € (k®p, F)* and 7; € (I®r, F)*, it follows that o(d) —d € (v2ra=at @ =D =s0))_[[u]] ®r, F.
Using the description of the Gx-action from Theorem we will compute o(a) for 0 € Gg. Since
a = p(a) = ¢(B)p(D), we have Gnaive,s(er) = ap(D~o(D)) and

@" 0 Onaive,s 09 "(B) = ¢" 0 Onaive,s 0 @ (D)
=ap"™ (D7'o(D)) o(D™)
= BD" ™ (D7 o(D)) o(D7).
It follows from Theorem hat lim,, 00 " (D~ 1o (D)) converges to a matrix D, with entries in F and
o(a) = aD,. Write Z for the image of x under the reduction map O¢» ®p, F — k®p, F. Observe that, for
reC’ ®r, IF, convergence of ©™(x) is equivalent to asking that x € O¢» ®F, F and T € F. Furthermore,

lim,, o ©™(x) equals the image of T under the multiplicative section of this reduction map. Therefore,
D~'o(D) € Mat(Op» @, F) and so

o(d1) d o(di) _dU(dz)
< dy o(d) d da ) modulo me» ®p, F.

D, = o (ds)
0 0
The next step is to give a simpler formula for D, when o € G. In fact, in this case we claim that

(8.3) D, = (é U(d)l— d> modulo mgs QF, Fp-

To show this it suffices to show that o(d;)d; ' = 1 modulo u?/?P~YOp, @, F for 0 € G, and that
d ey~ (etr=1)/ (pil)mcb ®r, F. Clearly the first claim implies the required congruences on the diagonal.

When combined with the second claim it also implies that U(d)%(il) —d%‘?) = 0(d)—d modulo m¢» ®p, T,

which establishes

For the first claim note: if ¢ € G, then %di") — 1 is divisible by € — 1, which we’ve already seen
generates the ideal u®?/ (P~ (O, . For the second claim we show that 7 = (9 Qk[[u]] C*)#=1 is contained
in Mgy u=(e+P=D/(r=Ym, . This will imply that did € u=(¢+P=D/(=Dm, @ F. Since d; is a unit
multiple of (v_QT’t)T and Q,; > 0, it will follow that d € U_(e+p_1)/(p_1)mcb ®p, F as desired. Take
z €7’. Then x = (u™)m for some m € M ®yry)) Oc» and some n,, € Q. Assume the n,, are maximal.
Since p(x) = x it follows that (u™)m = (uP™=°¢)p(m) and so p(m) = (u™="P"=e¢)m. Recall there exists
gr < e+p—1 with at least one inequality strict and (u?)9t C 9M¥ (where IMM? denotes the image of the
linearised Frobenius). Therefore

o(m) = (' "PPeoe=4n ) p(m!) = (p((u(nm—pmw—qm)/p)m/)

for some m’ € M @y O Injectivity of ¢ ensures that m € (u(e=Prnoe=a<)/PYO Q)] Oce-
Therefore,
e (unner*l(n,@*Pnnov*%))m ®k[ul] O
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and so
Nk — Plrop < Gr,
for all k, since otherwise we contradict the maximality of the n,. Therefore,

(]- - pf>n/<c = MNg — PNkoyp +p(n/{o<p - pnnoapz) + ...+ pf_l(nnogpf*1 - pnn)
< gk + Plrop + ... + pf_l(J;@oapf*1
<(e+p-1)(1+p+...4+ph)

f—1
p
= -1 .
(e+p—1) ( b1 )

We conclude that n, > —(e+p—1)/(p— 1) and so @ € M @y v TP~/ E=Dm, as desired.
Since 0,0 € WP (7%°) by Corollary we only have to show that the homomorphism Gy — F

c: o o(d) — d modulo me» ®F, F.

is contained in ¥, (x1, x2) — we know already that this homomorphism is obtained as the restriction of
a cocycle in Gx — F(x) and so Gal(L/K) acts by x~!. By part (1) of Corollary |4.7| we have

¢ € W (oot @ =060) f[u]] @, F).

As in Corollary take J = {7 € Homg, (k:,Fp) | t; < ar +1} and set x, = s; —a, — 1 for 7 € J and
x; = s, for 7 & J. Then z, € [0,e — 1] and

F-1 F-1 i
(84) Q5= sz (a,,.wi +e— ZSTWi) = Zpl(aﬂwi +1)(=1)7°"" ) 4 Zpl(e —1—=2w,54),
i=0 i=0 i=0

where (—1)7¢” equals —1 for 7 € J and 1 otherwise. Notice this is exactly Q. . s from Definition
Since 6, — s; = —z,, we conclude that c € ¥, ;, C HY(Gyp, F,) for U, ;, defined in Definition We
saw in the proof of Corollary [7.7] that

ar+1+ta, T
755 o (HTEJWT HTQJ wr 0 )

ar+e—x e—1l—x
0 HT&J we" " H’T‘GJWT T

Therefore ¢ € ¥, (X1, Xx2) and so 04,0 € WP(7). O

9. PROOF OF THE MAIN THEOREM

[

We are now ready to put together the proof of Theorem As usual write 7 = ()8 X2) and set
X = X1/xe. First, the following lemma shows that it suffices to prove o, € W*P(7) if and only if
04,0 € W (F) for any 7.

Lemma 9.1. For x € {cr,exp}, we have o4_p0 € W*(T) if and only if o4 € W*(T @ [[, wb7).
Proof. For x = exp, this follows immediately from the definitions. For x = cr, choose a labelling

70, -+, Te—1 of {k € Homg, (K,Q,) | k[ = 7} as in Definition E It is well known that there exists a

crystalline character x : Gx — Z: whose reduction modulo mz is [1, w¥ and with

{b-} ifi=0;

HT (X) = {{0} ifi=1,...,e—1.

Thus, if r is a crystalline lift witnessing o,_p0 € W (7), then r ® X is a crystalline lift witnessing
Oap €E W T[], wim). O

Next we consider the degenerate situations from Lemma and Corollary
Lemma 9.2. IfT =9 @ (*y° ) for an unramified character v and o = 0,9 with a;, = p — 1 for every
T, then o € WP(T) if and only if o € W(F).

Proof. Corollary showed that o € WP(F) so we need to show o € W (7) by producing a crystalline
lift of 7 of Hodge type 04,0. Below we sketch the well known construction of such a lift following [GLS14,
9.4] (which treats the unramified case) and [GLS12, 5.2.9] (which treats the totally ramified case).
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Choose an indexing 7g,...,7._1 of those embeddings x : K — @p with k|, = 7. Since Xeye|re =

II. weTP~1 ] there exists a crystalline character Y : G — Z; lifting ¥xcyec with

{p} ifi=0;

HT, (x) = {{1} ifi=1,...,e—1.

For any unramified character zz with ’(Z = 1 modulo my consider the Block-Kato subgroup

H}(Gx, Zy(¥X)) € H' (G, Z,(¥X))

classifying crystalline extensions of 1 by 1;% Any such extension has Hodge type 04,0, so we will be done
if we can show that any class in H'(G,F,(1Xcyc)) is contained in the image of the reduction map

HH (G, Zp(X)) = H' (G, Fyp(thXeye))

for at least one 7:/; In fact, since every Hodge—Tate weight of X is > 0, one has H}(GK,ZP({E@) =
HY (G, Zy(1X)). Therefore, this can be checked using standard techniques from Galois cohomology. [

The previous lemma allows us to assume that if 0 = 04,9 with a, = p — 1 for every 7, then 7 #
Y @ (*g° 1) for some unramified character. Therefore, Corollary applies and we are left proving
that 0,0 € WP(7) implies 0,0 € W (7). To do this we again have to exhibit a crystalline lift r of
7 of Hodge type 04,0 and we again produce this r as an extension of two carefully chosen crystalline
characters. Since 04,0 € WP(T), there is a maximal pair (Jmax, Tmax) as in Proposition so that

ar+1+Tmax,r Tmax,r
. (w [res oF [ 7 c >

r= r+e—Tmax,r e—1—Zmax,r
0 V2 [ Trg g, wr e g wr

max

and ¢ € \I/U(Xl,xg)Gal(L/K):Xfl. To produce the crystalline lift of 7 choose an indexing 7g,...,7._1 of

those embeddings x : K — @p with x|, = 7. We consider crystalline extensions

x1 C
r= =
( 0 x?>
for crystalline characters X1 and Yo with 7o-Hodge-Tate weights

(ar +1,0) if 7 € Jmax;

(HT,, (X1), HT5, (X2)) = {(o,aT +1) if 7€ Jmax.

For the other embeddings we require (HT., (X1), HT+, (X2)) equal (1,0) for j = 1,..., Zmax,- and equal
(0,1) for j = Tmax,7+1,...,e—1. Then we have X1|r, = [[.c; wir i Ema [lg,.. wy mod my .
Thus, replacing X1 by an unramified twist we can further assume y; lifts x;. Similarly, we can assume
5('2 lifts X2-

Any such extension r has Hodge type 0,0 and the cocycles C' defining such an extension are described
by the Bloch—-Kato subspace H}(GK,ZP()zl)?;l)) C HY (Gk,Zy(X1X5 ")) Let Q' denote the image of

this Bloch-Kato subspace under H'(Gx,Z,(X1X5 ")) — H*(Gx,F,(x)). We claim

max,T

T +1 ifr e
dims =1 + et R 7 + Card(Jmax) + Tmax,T5
7, @ ZT: Cmwer T € Jonax (o) Z |

where v/ = 0 unless x = 1 in which case v’ = 1. To see this note this dimension is the sum of the dimension
of the p-torsion in H' (G, Z,(X1X5 ")) (vlhich is /) and the Q,-dimension of Hl(GK,@p(glggl))f. It
follows from |[Nek93, 1.24] that this latter Q,-dimension is precisely the number x : K — Q,, for which the
k-Hodge—Tate weight of X7 is greater than the k-Hodge—Tate weight of X2. Examining the Hodge—Tate
weights of x1 and Y2, we see this number is precisely the sum in the second part of the claimed formula.

Write @ for the image of @' under the injection H'(Gk,F,(x)) — HY(Gr,Fp). It follows from
Corollary that any element of @ is contained in W, (x, x2)C*(E/ K )=x"", Corollary implies that
the dimension of @ is at least the dimension of \Ilg(xl,xg)cal(L/K):X_l since v = 1 from Corollary
implies the ' defined above equals 1. Therefore, Q@ = ¥, (x1, X2 Gal(L/K)=x"" and we can choose C so
that 7 = r ®; F, as desired. This finishes the proof of Theorem

It follows from these results that Corollary [6.9] can be improved as follows.

19



Corollary 9.3. If (Jmax; Tmax) 8 the mazimal pair from part (2) of Proposition and X = X1/X2,
then

U, (Xl s X2) = Vo T, Tmax

and
dimﬁp U, (x1, )(2)(;’3”1(”[():’(1 = v + Card(Jpmax) + Z Tmax, T

T

where v/ = 0 unless x = 1 in which case v/ = 1.

10. EXPLICIT COMPARISON WITH DEMBELE-DIAMOND—ROBERTS

When K/Q, is unramified [DDR16| define an alternative explicit set of weights WPPR(¥F) using local
class field theory. The remainder of this paper will be devoted to proving the following theorem.

Proposition 10.1. Suppose p > 2 and K/Q, is unramified. Then WP (7) = WDPPR(F).

As mentioned in the introduction, this follows from the results above and those of [CEGM17], since
both sets have the same description in terms of crystalline lifts. In the spirit of this paper, we will instead
give a direct proof of the equality using a reciprocity law of Briickner—Shaferevich—Vostokov (see [VosT79,
Thm. 4]) without reference to any p-adic Hodge theory. As a consequence we get an alternative proof of
the conjecture of [DDR16] when p > 2.

We begin by recalling the description of WPPR(F). For this we can suppose 7: Gx — GLa(F,) is
reducible (when 7 is irreducible WP (7) = WPPR(7) is essentially true by definition). As before, we

write
_ X1 C
T o~
( 0 ><2>

for characters x1,x2: Gx — GL2(F,). Set x := X1X5 ' and write

x=v¢ I o«

TEHome(k,Fp)
where 9 is an unramified character and a, € [1, p] with a, < p for at least one 7. Recall that this uniquely
determines the a,. For a fixed 7: k — F,, we also let A, denote a basis of the one-dimensional F,-

vector space (I ®y , F,) L/ K)=v " Ag before, let 7 denote a uniformiser of K and let 71/ @' =1 denote
a (pf — 1)-th root of 7 in a fixed algebraic closure.

Construction 10.2. Write w := 71/’ =1 and consider the homomorphism
Ewr: 1 ®F, Fp — (’)}j Rz, Fp;
a®br EAY([a]o") @ b.

with EAH as defined in Section 4l In [DDR16| an explicit basis of H'(Gr,F,(x)) is defined as follows.
For each 7: k < F,, we will define an embedding 7’ and an integer n’.. Recall the definition of 2, , from

. If ar0p # p, then

o 7':=T7opand nl = Qropq.
However, if aro, = p, then let j equal the smallest integer > 1 with a,.,; # p — 1 and set

o 7'i=10pland nl. = Qo0 — (pF — 1).
Then we define

ur =€ (M) € OF @2 F,,

for all 7 € Home(k,Fp). If x = 1, we additionally define ugiy := w® 1 € OF ®zF,. If x is cyclotomic,
we additionally define ucye 1= €_,7 —1)/-1) (b @ 1), where b € [ is any element with Try /g (b) # 0.

Lemma 10.3. The elements {u, | T € Home(k,Fp)}, together with wyiy if X s trivial and ucye if X s
cyclotomic, forms a basis of the Fp—vector space

U, = (1" ®ﬁp)Gal(L/K)=X.

Proof. See [DDR16, Theorem 5.1]. O
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The isomorphism G5 = L* of local class field theory induces an identification

H'(Gp,F,) = Homg (L* @7 F,,Fy)

under which H'(Gg,F,(x)) = H (G, F,)L/K)=x"" identifies with the F,-linear dual of Uy. Thus,
we can define a subspace of H!(Gk,F,(x)) in terms of the vanishing of cocycles on certain elements of
the basis above as follows.

Definition 10.4. Fix a Serre weight 0 = 0, and write r; := a, — b, + 1. Assume o € WP(7%). It
follows that there exists a J C Homg, (k,F,) with

(105) X1|IK = H W$T+1 H wf'rv X2|IK = H ngJrl H W'ZI)-T
TeJ TEJ T¢J TeJ

and let (Jmax, Zmax) be the maximal subset in the sense of Proposition (Recall we are assuming e = 1
and we must have z, = 0 for all 7 and similarly for Zyax.) In [DDRI16, §7.1] a cardinality-preserving
shift function p: p (Homg, (k,F,)) — o (Homg, (k,F,)) is defined on subsets of Homg, (k,F,). Then we
define

LgPR(x1,x2) € HY (G, Fp(x))
to be the subspace consisting of those cocycles f € H' (G, Fp(x)) with

o f(ur) =0 for all 7 & pi(Jmax)- _
o f(ucye) = 0 if x = Xcye except when, additionally, Jimax = Homg, (k,F,) and r. = p for all 7, in
which case we have no requirement at ucye.

Remark 10.6. The shift function p has a rather involved construction which, for the time being, we will
not need. The only point where the actual definition of yu is used in the assertions preceding Remark

In other words, if ¢, € H 1(G L,Fp) denotes the E,—dual of ur, and similarly for cgiv and ceye, then
LPPR(x1, x2) is the span of the ¢, for 7 € pu(Jmax), together with cyiy if x = 1 and ceye if X = Xeyes
Jmax = Homg, (k,Fp,) and 7, = p for all 7.

Definition 10.7. For 7 ~ (Xol ;2) as above, the set WPPE(7) is defined as follows. We have o = o, €
WDPR(F) if and only if
(1) o0 € WeP(7*) and
(2) [e] € LgPR(x1, x2)-
11. VOSTOKOV’S FORMULA

In this section we recall the explicit reciprocity laws described in [Vos79] which requires p > 2. As in
the previous section, local class field theory allows us to identify

HY(Gp,Fp) = Homg (L* ®7F,,Fy).

Fix a primitive p-th root of unity e¢; € L. Then, for o, 5 € L* ®z FPX, we write

(o, B) = fa(a),
where fz : G, — F,, denotes the image of 8 under the Kummer map L* ®zF, = H'(Gp, 1, (L) ®r, Fp) =

H'(GL,F,). Here the second equality comes from the identification u,(L) = F, induced by €1, so that
concretely ¢(a, 3) is defined so that

o875 = e
for any p-th root 5'/? of 3 and o, € G, any element mapped onto o by G, — G3b — L*.

Theorem 11.1. Let LAY denote the inverse of EAR : oW (1)[[v]] = 1+oW (1)[[v]] and let z(v) € W (1)[[v]]
be such that z(w) = e1. For A,B € W(I)((v))*, write
A =00, B ="0'|n

with e,n € 1+ oW (I)[[v]] and 0,0" € I**. Set
(11.2)
AH v
v = res, ((LAH(E(v))deg)n()) — LM (£(v))diog (B(v)) + LAH(W(”))dlog(A(U))) <,M{H>> )



where res,(x) denotes the coefficient of v in x € W(I)((v)) and diog denotes the logarithmic derivative

I(lv) L x(v). Then

c(A(w), B(w)) = Trwq)z,(v) modulo p.
Proof. This is [Vos79, Theorem 4.]. O

The following form of this result is what we will use in our proofs.

Corollary 11.3. Also write EAYR for the base-change of the isomorphism vW (I)[[v]] = 1 + vW (I)[[v]]
along ®z,F,. Then, for x,y(z(v)P — 1) € vl[[v]] ®F, Fp,, we have

(B (@) v=c, B (y(2(0)” = D)lo=w) = Ty, 5, /5, (o),

where 7, denotes the constant ternﬂ of

2 (e () - D (sopmt) (o (v - 1))

Proof. First suppose z,y € vl[[v]]. Then Theorem implies the assertion with 7, replaced by

res, ((W) <xcz}((z(v)p — 1)y) — 2diog (EA (y(2(0)" = 1)) + (2(0)P — 1)ydiog (EAH(:E))» .

We compute
e (EAH(x)) = djog €Xp Z ﬂ(m) = 4 Z ﬂ(x) =y ! Z o™ vi(x)
¢ ¢ m>0 pm dv m>0 pm m>0 dv ’

where the last equality follows from the identity v% o™ =pme™o v%. Using this we can rewrite the
above residue as the residue of

(()1—1> Pl = 1) = (073 (v;f}(y@(v)p_l))) R (ui<x>)

m2>0 m=0
- (o) [+ PO (vat et 1) +v‘1§0(y@m (v7))

This is precisely the constant term of 7,. It follows that the identity holds for general z,y € vl[[v]] ®F, F,
by linearity.

12. PROOF OF PROPOSITION [10.1]

Suppose T = (%1 XCQ) and write x = x1/x2. To prove WeP(7) = WPPR(F) it suffices to show that

_—1
LYPR(x1, x2) = U (X1, x2) O/ H)=x

for each Serre weight o with o € WP (7%%). Since the analogue of Lemma also holds with * = DDR,
we can assume o = 0q0. Then o € WP (7) implies the existence of J C Homg, (k,F,) so that
holds. Write (Jmax; Zmax) for the maximal such subset from Proposition Since e = 1, we have that
Tmax.r = 0 for all 7. Let ¢ be the unramified character so that x ™! = Yw;_ . ... ;recall wy . is
the character from Remark [5.3]

The degenerate case. First, we treat the case where Jyax = Hommp(k,Fp) and a, = p—1 for each 7. Then
Lemma implies ¥, (x1, )(2)G"L1(L/K):X_1 = HY(Gk,F,(x)). Note that y is cardinality preserving, so
that y(Jmax) = Homg, (k,F,) in this case. Then Lemma implies LDPR(x1, x2) = H (G, Fp(X)),
so we are done in this case.

2By constant term we mean the image of the Laurent series under the Fp-linear extension of the Fp-linear map I((v)) — [
sending the series onto its constant term. After identifying I((v)) ®r, Fp =[], Fp((v)), this becomes the constant term in
each coordinate.
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The non-degenerate cases. For the rest of the proof we can assume that either Jy.x # Home(k,E,) or
ar < p—1 for some 7. To simplify notations we set

Q‘r = Q7',0',J

max ;Tmax

and note that, due to the assumptions on Jyay and a,, we have Q, > —p(pf —1)/(p — 1).
Having excluded the degenerate case above, we note that it follows from the definitions that

dimﬁp (LUDDR(Xh Xz)) =1 + Card(Jmax),

where v/ =1 if x = 1 and 0 otherwise. Corollary therefore shows that \I/,,(Xl,Xg)Gal(L/K):’(1 and
LPPR(x1, x2) have the same F,-dimension. Therefore, it suffices to show that

.. —1
Wy (x1, x2) FHE 0= C IOPR (v o).

For a € L™, let 0, € G, be an element mapped onto o by G, — Gib — LX. Then, since ¥, (x1, X2) =
LU , the value of an element in ¥, (x1, x2) at o, is computed by

¢ (e, B ((0%7) 1 (2(0)? = 1)2)|v=s)
for some z € {[[u]] ®r, F,. The definition of LDP®(x1, x2) therefore implies that the desired inclusion
will follow from
(V1) ¢ (BA (0™ A ) oo, A ((0947) 7 (2(0)P — 1)) [u=w) = 0 for £ & p(Jmax);
(V2) ¢ (EAH(bvp@f—l)/(p—l))|U=w,EAH((UQT)T(Z(U)Z’ - l)x)\vzw) — 0 for some b € I with Tryp b #
0,

for every = € I[[u]] ®F, F,. In fact, in view of Proposition we can assume that for a fixed 79 : k — F,,
we have either

e r = A,y wWhenever 7o go_l € Jmax, O
o =)\, v %0 ifp =1 and —Q,, € (pf — 1)Z>o.

Restricting to these z’s will simplify some of the computations.

Step 1: The vanishing in (V2) always occurs. Since Q, > —p(p/ —1)/(p — 1), we have

(12.1) ()7 (2(0)P — D)z € vl[[v]] ®r, Fp.

Therefore, Corollary computes the value in (V2) as the trace of the constant term of

Z (W) ™ Ui(bvp(pf—l)/(:v—l)) _ Z 1 bpP® =D/ (=1 ;m vi((vQT)T(z(v)” —1)z)
dv z(v)p =1 dv

m>0 m>1

Using that Q. > —p(p/ — 1)/(p — 1), we see that this is an element of vl[[v]] ®F, F,. Therefore, the

constant term vanishes.

Step 2: A formula for the value in (V1). Establishing the vanishing in (V1) will be more involved. We
may assume for the remainder of the proof that x ¢ p(Jmax). We have already observed that
(V)7 (2(v)P — 1)z € vl[[v]] @5, F,. We also have v™' Ay € vl[[v]] ®F, Fp,. Therefore, Corollary
computes the value in (V1) as the trace of the constant term of

(12.2)
> [ e (040" A - (st ) o wse™ (0400 (0 - 12)
(Am) (Bm)

for k & p(Jmax). To finish the proof of Proposition we will establish the vanishing of the constant
term of (12.2)) by considering the constant terms of each of the (A,,) and (By,)’s.
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Step 3: Vanishing constant terms in (A,,). First, supose m > 0 and assume x = A, with 700 ! € Jnax-
Since ¢ (M) = Aprop—m 4, We can write (Ay,) as

/ Q. +p™mn’
nn)\‘r’w)\ﬁ/ow_nz’d)v TP .

Therefore (A,,) has a non-zero constant term only if

e p"nl +Q,.=0

e T=rKop ™
Writing 7/ =10 gp’l, we see that 7/ € Jpnayx and Q. = pQ, + (pf — 1)r,/. Rewriting the two conditions
above for 7/, we obtain p"*1n! = —Q. +(pf —1)r; and k' = 7/ 0™ *!. Then it follows from |[CEGM17,
3.6.7] that this implies k € p(Jmax), giving the desired contradiction. (To apply this proposition to our
situation we note that in loc. cit. 7y is fixed and 7y o ¢' is written 7;. Furthermore, n’mwi is written
n) and the value & from loc. cit. is precisely —Q. opi + 67,0 (T0 © V)T r0pi (P — 1) with 4, the
characteristic function for Jy.x on all embeddings.)

Remark 12.3. This is where the precise definition of the shift function x from the definition of LDPR (y, y2)
is used.

The other case is when ¢ = 1, —Q,, € (p/ — 1)Z>0, and = A\, yv~%. Then (A,,) evaluates to

n;ATU,¢AK/o¢—m7vam"; which is clearly contained in vl[[v]] ®g, F,. Thus, the vanishing of the constant
term here is clear.

Step 4: Vanishing residues of (By,). Assume m > 1 and = A,y with 70 ™ € Jpax. Since z(v)P — 1

is a p-th power in I[[v]], we have <L (z(v)? — 1) = 0 in I[[v]]. Therefore, we can rewrite (B,,) as

QA g A ropm 4 (2(0)P — 1)pm,1vn;+pm97'
We may assume £’ = 70~ since Mg yArop-m 4 i zero otherwise. Since z(v)? — 1 has v-adic valuation
p(pf —1)/(p — 1), it suffices to show that

(12.4) (p™ —1) <p(§f_11)) +nl +p"Q, > 0.

Using that n/, > (pf —1)/(p — 1) (see |[CEGM17, 3.6.4]) and Q, > —p(pf —1)/(p — 1), we have

i ;e
(™ -1) (IM) + g+ " > (1;_ 11) (p(P™ = 1) +1—p™*) = —(p) - 1).

On the other hand, since k' = 70 ™™ it follows that

n,
w/-c’ 7("')7'

Q 7p7n527

T —
7(&)'{'/

and so n), + p™€; = 0 modulo p/ — 1. This, combined with the previous inequality, implies

p—1
Thus, to prove we only have to show we cannot have an equality in when m > 1. However,
equality would imply n/, is divisible by p and this is not the case (for example, by [CEGM17, 3.6.1]).
The other possibility is when ¥ =1, —Q,, € (p! — 1)Z>p, and x = )\Toy,/,v*QTO. However, in this case
(Bm) evaluates to zero so there is nothing to compute.

(12.5) (pm™ —1) <p(pf_1)> +nl +p"Q, > 0.
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